Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Geochem Health ; 46(2): 41, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227068

RESUMEN

Stress due to drought lowers crop yield and frequently leads to a rise in food scarcity. Plants' intricate metabolic systems enable them to tolerate drought stress, but they are unable to handle it well. Adding some external, environmentally friendly supplements can boost plant growth and productivity when it comes to drought-stressed plants. In order to prevent the detrimental effects of drought in agricultural regions, environmentally friendly practices must be upheld. Plant growth-promoting rhizobacteria (PGPR) can exhibit beneficial phytostimulation, mineralization, and biocontrol activities under drought stress. The significant impact of the PGPR previously reported has not been accepted as an effective treatment to lessen drought stress. Recent studies have successfully shown that manipulating microbes can be a better option to reduce the severity of drought in plants. In this review, we demonstrate how modifying agents such as biochar, PGPR consortia, PGPR, and mycorrhizal fungi can help overcome drought stress responses in crop plants. This article also discusses CRISPR/Cas9-modifiable genes, increase plant's effectiveness in drought conditions, and increase plant resistance to drought stress. With an eco-friendly approach in mind, there is a need for practical management techniques having potential prospects based on an integrated strategy mediated by CRISPR-Cas9 editing, PGPR, which may alleviate the effects of drought stress in crops and aid in achieving the United Nation Sustainable Development Goals (UN-SDGs-2030).


Asunto(s)
Carbón Orgánico , Sequías , Edición Génica , Agricultura , Productos Agrícolas
2.
Biotechnol Genet Eng Rev ; : 1-20, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36597411

RESUMEN

Salt tolerant plant growth boosting rhizobacteria can play an important function in plant salinity stress mitigation. In the current investigation, only two rhizobacterial isolates out of 68 produced exo-polysaccharide at the fastest rate and exhibited plant growth promoting properties such as IAA, CAT, APX production, and phosphate solubilization at 6% NaCl (w/v) concentration. Both isolates had synergistic PGP features and were compatible with one another. Isolate SP-20 was identified as Kluyvera sp. and SP-203 was identified as Enterobacter sp. -by 16SrDNA sequencing. After 30, 60, and 90 days, the combination of SP-20 and SP-203 enhanced the physicochemical parameters in the maize plant in comparison to the control. By increasing soil enzymes like DHA and PPO, both isolates significantly improved the soil health matrix. When a group of these isolates were inoculated into 1% and 2% NaCl (w/v) supplemented soil, the absorption of Na in the shoot and root of maize plants was inhibited by around 50%. The BCF values for all treatments were less than TF, and the values of BCF and TF were less than one. Therefore, the present study illustrated that the novel native isolates play a remarkable role to mitigate salinity stress in maize plant.

3.
Chemosphere ; 313: 137551, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36521746

RESUMEN

In this investigation, marigold flower-waste was activated with iron salts (MG-Fe), subsequently marigold plant extract (MG-Fe-Ex) for the adsorptive elimination of As3+ and As5+ from contaminated water. The governing factor such as medium pH, temperature, pollutant concentration, reaction time, adsorbent dose were considered for the study. The complete elimination of As3+/5+ was recorded with MG-Fe-Ex at pH 8.0, 90 min, 30 °C, dose 4 g/L, 20 mg/L of As3+/5+ and shaking rate 120 rpm, while under the identical experimental condition, MG-Fe exhibited 98.4% and 73.3% removal for As5+ and As3+, respectively. The MG-Fe-Ex contains iron oxides (Fe2O3 and Fe3O4) as a result of iron ions reaction with plant bioactive molecules as evident from x-ray diffraction analysis (XRD), energy dispersive x-ray spectroscopic (EDS) and Fourier transform infrared (FTIR) spectroscopic study. The adsorption data of As3+/5+ on MG-Fe and MG-Fe-Ex was best fitted by pseudo-first order kinetic and freundlich isotherm except As5+ adsorption on MG-Fe-Ex that can be described by langmuir isotherm model. The prevailing mechanism in adsorption of As3+/5+ on both adsorbent might be hydrogen bonding, electrostatic attraction and complexation. From the above, it is confirmed that MG-Fe-Ex adsorbent has high potential and can be used for the adsorptive elimination of As3+/5+ from contaminated water in sustainable and environmentally friendly way.


Asunto(s)
Arsénico , Contaminantes Químicos del Agua , Purificación del Agua , Hierro/química , Arsénico/análisis , Contaminantes Químicos del Agua/análisis , Concentración de Iones de Hidrógeno , Purificación del Agua/métodos , Adsorción , Cinética , Espectroscopía Infrarroja por Transformada de Fourier , Agua/química
4.
Environ Res ; 209: 112767, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35085562

RESUMEN

Fly ash (FA) management is a key concern of ecologists around the world, so its potential as a nutritional supplement for agro-ecosystems needs to be explored. Therefore, alternate techniques that are eco-friendly to manage this emerging dual-edged waste are preferable in this field. The current study sought to determine the soil-modifying, crop yield improvement, and nematicidal properties of FA. In this study, beetroot seeds were sown in pots comprising field soil amended with differing proportions of FA (w/w) revealed the bio-fold properties of FA. Biomineralization and mapping of elements revealed that increased nutritional elements in soil supplemented with 15% FA induced growth-performance and yield of beetroot. Molecularly and morphologically characterized Meloidogyne incognita was used as nematode in this study for optimization of nematicidal properties FA. Plant growth performance, photosynthetic pigments, and yield of beetroot were significantly reduced owing to M. incognita as compared to control (un-treated and un-inoculated), and 15% FA reversed the negative effect of M. incognita significantly (P < 0.05) as compared to control plants. Confocal laser microscopy confirmed that 15% FA augmented in soil reduced nematode-juvenile invasion in beetroot as compared with control. The PCA (principal component analysis) accounted for 98.63% and 98.8% for the total-data variability in plants without nematodes and total data variability in treated plants (M. incognita + FA) respectively, which showed fit for a significant correlation between the various studied parameters in present study.


Asunto(s)
Beta vulgaris , Tylenchoidea , Animales , Ceniza del Carbón , Ecosistema , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA