Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Carbohydr Polym ; 330: 121838, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38368088

RESUMEN

As a key component in cell walls of numerous organisms ranging from green algae to higher plants, AGPs play principal roles in many biological processes such as cell-cell adhesion and regulating Ca2+ signaling pathway as a Ca2+-capacitor. Consistently, AGP structures vary from species to species and from tissue to tissue. To understand the functions of AGPs, it is vital to know their structural differences relative to their location in the plant. Thus, AGPs were purified from different Arabidopsis tissues. Analyses of these AGPs demonstrated that the AGPs comprised covalently linked pectin and AGP, referred to as pectic-AGPs. Importantly, these pectic-AGPs were glycosylated with a remarkable variety of polysaccharides including homogalacturonan, rhamnogalacturonan-I, and type II arabinogalactan at different ratios and lengths. This result not only suggests that pectic-AGP is a major form of Arabidopsis AGPs, but also supports AGPs serve as crosslinkers covalently connecting pectins with structures tailored for tissue-specific functions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Mucoproteínas/metabolismo , Pectinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Pared Celular/química
2.
Carbohydr Polym ; 301(Pt B): 120340, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36446508

RESUMEN

To characterize a purified rhamnogalacturonan-I (RG-I) containing both RG-I and arabinogalactan-protein (AGP) types of glycosyl residues, an AGP-specific ß-1,3-galactanase that can cleave the AG backbone and release the AG sidechain was applied to this material. Carbohydrate analysis and NMR spectroscopy verified that the galactanase-released carbohydrate consists of RG-I covalently attached to the AG sidechain, proving a covalent linkage between RG-I and AGP. Size exclusion chromatography-multiangle light scattering-refractive index detection revealed that the galactanase-released RG-I has an average molecular weight of 41.6 kDa, which, together with the percentage of pectic sugars suggests an RG-I-AGP comprising one AGP covalently linked to two RG-I glycans. Carbohydrate analysis and NMR results of the RG-I-AGP, the galactanase-released glycans, and the RG lyase-released glycans demonstrated that the attached RG-I glycans are decorated with α-1,5-arabinan, ß-1,4-galactan, xylose, and 4-O-Me-xylose sidechains. Our measurement suggests that the covalently linked RG-I-AGP is the major component of the traditionally prepared RG-I.


Asunto(s)
Arabidopsis , Ramnogalacturonanos , Xilosa , Pared Celular
3.
J Phys Chem B ; 124(45): 10117-10125, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33112619

RESUMEN

Rhamnogalacturonan II (RG-II)-the most complex polysaccharide known in nature-exists as a borate cross-linked dimer in the plant primary cell wall. Boric acid facilitates the formation of this cross-link on the apiosyl residues of RG-II's side chain A. Here, we detail the reaction mechanism for the cross-linking process with ab initio calculations coupled with transition state theory. We determine the formation of the first ester linkage to be the rate-limiting step of the mechanism. Our findings demonstrate that the regio- and stereospecific nature of subsequent steps in the reaction itinerary presents four distinct energetically plausible reaction pathways. This has significant implications for the overall structure of the cross-linked RG-II dimer assembly. Our transition state and reaction path analyses reveal key geometric insights that corroborate previous experimental hypotheses on borate ester formation reactions.


Asunto(s)
Ácidos Bóricos , Pectinas , Pared Celular , Pentosas
4.
SLAS Technol ; 25(4): 329-344, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32468908

RESUMEN

Rhamnogalacturonan II (RG-II) is a structurally complex pectic polysaccharide that exists as a borate ester cross-linked dimer in the cell walls of all vascular plants. The glycosyl sequence of RG-II is largely conserved, but there is evidence that galacturonic acid (GalA) methyl etherification and glucuronic acid (GlcA) methyl esterification vary in the A sidechain across plant species. Methyl esterification of the galacturonan backbone has also been reported but not confirmed. Here we describe a new procedure, utilizing aq. sodium borodeuteride (NaBD4)-reduced RG-II, to identify the methyl esterification status of backbone GalAs. Our data suggest that up to two different GalAs are esterified in the RG-II backbone. We also adapted a procedure based on methanolysis and NaBD4 reduction to identify 3-, 4-, and 3,4-O-methyl GalA in RG-II. These data, together with matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF) MS analysis of sidechain A generated from selected RG-IIs and their NaBD4-reduced counterparts, suggest that methyl etherification of the ß-linked GalA and methyl esterification of the GlcA are widespread. Nevertheless, the extent of these modifications varies between plant species. Our analysis of the sidechain B glycoforms in RG-II from different dicots and nonpoalean monocots suggests that this sidechain has a minimum structure of an O-acetylated hexasaccharide (Ara-[MeFuc]-Gal-AceA-Rha-Api-). To complement these studies, we provide further evidence showing that dimer formation and stability in vitro is cation and borate dependent. Taken together, our data further refine the primary sequence and sequence variation of RG-II and provide additional insight into dimer stability and factors controlling dimer self-assembly.


Asunto(s)
Pared Celular/química , Pectinas/metabolismo , Células Vegetales/metabolismo , Ácidos Urónicos/metabolismo , Cationes , Dimerización , Esterificación , Metilación , Pectinas/química , Temperatura , Ácidos Urónicos/química
5.
J Biol Chem ; 293(49): 19047-19063, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30327429

RESUMEN

Homogalacturonan (HG) is a pectic glycan in the plant cell wall that contributes to plant growth and development and cell wall structure and function, and interacts with other glycans and proteoglycans in the wall. HG is synthesized by the galacturonosyltransferase (GAUT) gene family. Two members of this family, GAUT1 and GAUT7, form a heteromeric enzyme complex in Arabidopsis thaliana Here, we established a heterologous GAUT expression system in HEK293 cells and show that co-expression of recombinant GAUT1 with GAUT7 results in the production of a soluble GAUT1:GAUT7 complex that catalyzes elongation of HG products in vitro The reaction rates, progress curves, and product distributions exhibited major differences dependent upon small changes in the degree of polymerization (DP) of the oligosaccharide acceptor. GAUT1:GAUT7 displayed >45-fold increased catalytic efficiency with DP11 acceptors relative to DP7 acceptors. Although GAUT1:GAUT7 synthesized high-molecular-weight polymeric HG (>100 kDa) in a substrate concentration-dependent manner typical of distributive (nonprocessive) glycosyltransferases with DP11 acceptors, reactions primed with short-chain acceptors resulted in a bimodal product distribution of glycan products that has previously been reported as evidence for a processive model of GT elongation. As an alternative to the processive glycosyltransfer model, a two-phase distributive elongation model is proposed in which a slow phase, which includes the de novo initiation of HG and elongation of short-chain acceptors, is distinguished from a phase of rapid elongation of intermediate- and long-chain acceptors. Upon reaching a critical chain length of DP11, GAUT1:GAUT7 elongates HG to high-molecular-weight products.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Glucuronosiltransferasa/metabolismo , Pectinas/biosíntesis , Arabidopsis/enzimología , Proteínas de Arabidopsis/química , Glucuronosiltransferasa/química , Células HEK293 , Humanos , Modelos Biológicos , Estructura Molecular , Pectinas/química , Electricidad Estática , Especificidad por Sustrato , Azúcares de Uridina Difosfato/metabolismo
6.
Plant J ; 96(5): 1036-1050, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30203879

RESUMEN

Boron is a micronutrient that is required for the normal growth and development of vascular plants, but its precise functions remain a subject of debate. One established role for boron is in the cell wall where it forms a diester cross-link between two monomers of the low-abundance pectic polysaccharide rhamnogalacturonan-II (RG-II). The inability of RG-II to properly assemble into a dimer results in the formation of cell walls with abnormal biochemical and biomechanical properties and has a severe impact on plant productivity. Here we describe the effects on RG-II structure and cross-linking and on the growth of plants in which the expression of a GDP-sugar transporter (GONST3/GGLT1) has been reduced. In the GGLT1-silenced plants the amount of L-galactose in side-chain A of RG-II is reduced by up to 50%. This leads to a reduction in the extent of RG-II cross-linking in the cell walls as well as a reduction in the stability of the dimer in the presence of calcium chelators. The silenced plants have a dwarf phenotype, which is rescued by growth in the presence of increased amounts of boric acid. Similar to the mur1 mutant, which also disrupts RG-II cross-linking, GGLT1-silenced plants display a loss of cell wall integrity under salt stress. We conclude that GGLT1 is probably the primary Golgi GDP-L-galactose transporter, and provides GDP-L-galactose for RG-II biosynthesis. We propose that the L-galactose residue is critical for RG-II dimerization and for the stability of the borate cross-link.


Asunto(s)
Antiportadores/fisiología , Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Boratos/metabolismo , Galactosa/metabolismo , Pectinas/metabolismo , Antiportadores/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Ácido Ascórbico/metabolismo , Pared Celular/metabolismo , Hojas de la Planta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA