RESUMEN
Synthetic fertilizer and herbicides encompass the largest share in nutrient and weed management on food grain crops that create serious environmental issues. Integrated nutrient and non-chemical weed management approaches may help to reduce the chemical load in the environment, maintaining higher weed control efficiency and yield. A field experiment was conducted for two consecutive monsoon seasons during 2015 and 2016 in farm fields to develop a profitable and sustainable rice production system through integrated nutrient and weed management practices. A varied combination of nutrients either alone or integrated with chemical and non-chemical weed management were tested on transplanted rice in a factorial randomized block design with three replications. The results showed that the integration of concentrated organic manures with chemical fertilizer effectively inhibited weed growth and nutrient removal. Integration of nutrient and weed management practices significantly enhanced 9% biomass growth, 10% yield of the rice crop along with 3-7% higher nutrient uptake. Brassicaceous seed meal (BSM) and neem cake also had some influence on weed suppression and economic return. Thus, the integrated nutrient and weed management practices in rice cultivation might be an effective way to achieve economic sustainability and efficient rice cultivation in eastern India. Shortages of farmyard manure and vermicompost could be supplemented by BSM and neem cake in the integrated module.
Asunto(s)
Oryza/efectos de los fármacos , Oryza/crecimiento & desarrollo , Malezas/efectos de los fármacos , Malezas/crecimiento & desarrollo , Suelo/química , Agricultura/métodos , Biomasa , Carbono/química , Productos Agrícolas/efectos de los fármacos , Fertilidad/efectos de los fármacos , Fertilizantes , Herbicidas/farmacología , India , Estiércol , Nitrógeno/química , Nutrientes/química , Fósforo/química , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrolloRESUMEN
Micronutrient malnutrition is a global health issue and needs immediate attention. Over two billion people across the globe suffer from micronutrient malnutrition. The widespread zinc (Zn) deficiency in soils, poor zinc intake by humans in their diet, low bioavailability, and health consequences has led the research community to think of an economic as well as sustainable strategy for the alleviation of zinc deficiency. Strategies like fortification and diet supplements, though effective, are not economical and most people in low-income countries cannot afford them, and they are the most vulnerable to Zn deficiency. In this regard, the biofortification of staple food crops with Zn has been considered a useful strategy. An agronomic biofortification approach that uses crop fertilization with Zn-based fertilizers at the appropriate time to ensure grain Zn enrichment has been found to be cost-effective, easy to practice, and efficient. Genetic biofortification, though time-consuming, is also highly effective. Moreover, a Zn-rich genotype once developed can also be used for many years without any recurring cost. Hence, both agronomic and genetic biofortification can be a very useful tool in alleviating Zn deficiency.
Asunto(s)
Biofortificación/métodos , Productos Agrícolas/genética , Fertilizantes/análisis , Alimentos Fortificados/normas , Desnutrición/dietoterapia , Suelo/química , Zinc/química , Humanos , Desnutrición/fisiopatología , Estado NutricionalRESUMEN
There are 11 different varieties of Beta vulgaris L. that are used in the food industry, including sugar beets, beetroots, Swiss chard, and fodder beets. The typical red coloration of their tissues is caused by the indole-derived glycosides known as betalains that were analyzed in hypocotyl extracts by UV/Vis spectrophotometry to determine the content of betacyanins (betanin) and of betaxanthins (vulgaxanthin I) as constituents of the total betalain content. Fields of beet crops use to be also infested by wild beets, hybrids related to B. vulgaris subsp. maritima or B. macrocarpa Guss., which significantly decrease the quality and quantity of sugar beet yield; additionally, these plants produce betalains at an early stage. All tested B. vulgaris varieties could be distinguished from weed beets according to betacyanins, betaxanthins or total betalain content. The highest values of betacyanins were found in beetroots 'Monorubra' (9.69 mg/100 mL) and 'Libero' (8.42 mg/100 mL). Other beet varieties contained less betacyanins: Sugar beet 'Labonita' 0.11 mg/100 mL; Swiss chard 'Lucullus,' 0.09 mg/100 mL; fodder beet 'Monro' 0.15 mg/100 mL. In contrast with weed beets and beetroots, these varieties have a ratio of betacyanins to betaxanthins under 1.0, but the betaxanthin content was higher in beetcrops than in wild beet and can be used as an alternative to non-red varieties. Stability tests of selected varieties showed that storage at 22 °C for 6 h, or at 7 °C for 24 h, did not significantly reduce the betalain content in the samples.
Asunto(s)
Beta vulgaris/química , Betacianinas/análisis , Betaxantinas/análisis , Malezas/química , Beta vulgaris/genética , Betacianinas/química , Betalaínas/análisis , Genotipo , Hipocótilo/química , Extractos Vegetales/químicaRESUMEN
Crops, such as white cabbage (Brassica oleracea L. var. capitata (L.) f. alba), are often infested by herbivorous insects that consume the leaves directly or lay eggs with subsequent injury by caterpillars. The plants can produce various defensive metabolites or free radicals that repel the insects to avert further damage. To study the production and effects of these compounds, large white cabbage butterflies, Pieris brassicae and flea beetles, Phyllotreta nemorum, were captured in a cabbage field and applied to plants cultivated in the lab. After insect infestation, leaves were collected and UV/Vis spectrophotometry and HPLC used to determine the content of stress molecules (superoxide), primary metabolites (amino acids), and secondary metabolites (phenolic acids and flavonoids). The highest level of superoxide was measured in plants exposed to fifty flea beetles. These plants also manifested a higher content of phenylalanine, a substrate for the synthesis of phenolic compounds, and in activation of total phenolics and flavonoid production. The levels of specific phenolic acids and flavonoids had higher variability when the dominant increase was in the flavonoid, quercetin. The leaves after flea beetle attack also showed an increase in ascorbic acid which is an important nutrient of cabbage.