Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 26(24)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34946559

RESUMEN

This study investigated the biocomposite pectin films enriched with murta (Ugni molinae T.) seed polyphenolic extract and reinforced by chitin nanofiber. The structural, morphological, mechanical, barrier, colorimetric, and antioxidant activity of films were evaluated. The obtained data clearly demonstrated that the addition of murta seed extract and the high load of chitin nanofibers (50%) provided more cohesive and dense morphology of films and improved the mechanical resistance and water vapor barrier in comparison to the control pectin film. The antioxidant activity ranged between 71% and 86%, depending on the film formulation and concentration of chitin nanofibers. The presented results highlight the potential use of chitin nanofibers and murta seed extract in the pectin matrix to be applied in functional food coatings and packaging, as a sustainable solution.


Asunto(s)
Materiales Biocompatibles/química , Quitina/química , Myrtaceae/química , Nanofibras/química , Pectinas/química , Extractos Vegetales/química , Materiales Biocompatibles/aislamiento & purificación , Embalaje de Alimentos , Tamaño de la Partícula , Pectinas/aislamiento & purificación , Extractos Vegetales/aislamiento & purificación , Semillas/química
2.
Int J Biol Macromol ; 186: 92-99, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34246675

RESUMEN

The efficient use of waste from food processing industry is one of the innovative approaches within sustainable development, because it can be transferred into added value products, which could improve economic, energetic and environmental sectors. In this context, the squid pen waste from seafood industry was used as raw material to obtain nanofibrous ß-chitin films. In order to extend functionality of obtained films, elderberry extract obtained from biomass was added at different concentrations. The tensile strength of chitin-elderberry extract films was improved by 52%, elongation at break by 153% and water vapor barrier by 65%. The obtained material showed distinct color change when subjected to acidic or basic solutions. It was proven by CIELab color analysis that all color changes could be easily perceived visually. In addition, the obtained nanofibrous film was successfully used to monitor the freshness of Hake fish. Namely, when the film was introduced in a package that contained fresh fish, its color was efficiently changed within the time during the storage at 4 °C. The obtained results demonstrated that food processing waste could be efficiently valorized, and could give sustainable food package design as a spoilage indicator of high protein food.


Asunto(s)
Quitina/aislamiento & purificación , Decapodiformes , Manipulación de Alimentos , Embalaje de Alimentos , Nanofibras , Alimentos Marinos , Materiales Inteligentes/aislamiento & purificación , Residuos , Animales , Color , Colorimetría , Contaminación de Alimentos , Almacenamiento de Alimentos , Frutas , Gadiformes , Concentración de Iones de Hidrógeno , Nanotecnología , Extractos Vegetales/química , Sambucus , Temperatura , Resistencia a la Tracción , Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA