Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37047376

RESUMEN

Exposure to a prototypic air pollutant ozone (O3) has been associated with the activation of neuroendocrine stress response along with neural changes in oxidative stress (OS), inflammation, and Alzheimer's disease-like pathologies in susceptible animal models. We hypothesized that neural oxidative and transcriptional changes induced by O3 in stress responsive regions are sex-dependent. Male and female adult Long-Evans rats were exposed to filtered air or O3 for two consecutive days (0.8 ppm, 4 h/day) and brain regions were flash-frozen. Activities of cerebellar OS parameters and mitochondrial complex I, II, and IV enzymes were assessed to confirm prior findings. We assessed transcriptional changes in hypothalamus (HYP) and hippocampus (HIP) for markers of OS, microglial activity and glucocorticoid signaling using qPCR. Although there were no O3 or sex-related differences in the cerebellar activities of OS and mitochondrial enzymes, the levels of protein carbonyls and complex II activities were higher in females regardless of O3. There were no statistical differences in baseline expression of genes related to OS (Cat, Dhcr24, Foxm1, Gpx1, Gss, Nfe2l2, Sod1) except for lower HYP Sod1 expression in air-exposed females than males, and higher HIP Gss expression in O3-exposed females relative to matched males. Microglial marker Aif1 expression was higher in O3-exposed females relative to males; O3 inhibited Itgam only in males. The expression of Bdnf in HIP and HYP was inhibited by O3 in both sexes. Genes related to glucocorticoid signaling (Fkbp4, Fkbp5, Hsp90aa1, Hspa4, nr3c1, nr3c2) showed sex-specific effects due to O3 exposure. Baseline expression of HIP Fkbp4 was higher in females relative to males. O3 inhibited Nr3c1 in female HIP and male HYP, but Nr3c2 was inhibited in male HYP. Fkbp4 expression was higher in O3-exposed females when compared to matched males, whereas Fkbp5 was expressed at higher levels in both brain regions of males and females. These results indicate that sex-specific brain region responses to O3 might, in part, be caused by OS and regulation of glucocorticoid signaling.


Asunto(s)
Ozono , Ratas , Masculino , Femenino , Animales , Ozono/toxicidad , Glucocorticoides/farmacología , Superóxido Dismutasa-1 , Ratas Long-Evans , Estrés Oxidativo , Hipocampo , Hipotálamo
2.
Toxicol Appl Pharmacol ; 408: 115254, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32991914

RESUMEN

Ozone (O3) is a widespread air pollutant that produces cardiovascular and pulmonary dysfunction possibly mediated by activation of central stress centers. Epidemiological data suggest that sedentary lifestyles may exacerbate responses to air pollutants such as O3. We sought to assess neurological changes in response to O3 exposure and an active lifestyle. We developed an animal model in which female Long-Evans rats were either sedentary or active with continuous access to running wheels starting at postnatal day (PND) 22 until the age of PND 100 and then exposed to O3 (0, 0.25, 0.5 or 1.0 ppm) 5 h/day for two consecutive days. We found significantly more reactive microglia within the hippocampus (HIP) in animals exposed to O3 in both sedentary and active rats. No changes were detected in astrocytic coverage. We next analyzed mitochondrial bioenergetic parameters (complex I, complex II and complex IV). Complex I activity was significantly affected by exercise in hypothalamus (HYP). Complex II activity was significantly affected by both exercise and O3 exposure in the HIP. Concomitant with the changes in enzymatic activity, there were also effects on expression of genes related to mitochondrial bioenergetics and antioxidant production. These results demonstrate that O3 induces microglia reactivity within stress centers of the brain and that mitochondrial bioenergetics are altered. Some of these effects may be augmented by exercise, suggesting a role for lifestyle in O3 effects on brain mitochondrial bioenergetics parameters in agreement with our previous reports on other endpoints.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Metabolismo Energético/efectos de los fármacos , Microglía/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Ozono/toxicidad , Conducta Sedentaria , Animales , Femenino , Mitocondrias/metabolismo , Ratas Long-Evans
3.
Int J Mol Sci ; 20(24)2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-31847143

RESUMEN

Dietary supplementation with omega-3 and omega-6 fatty acids offer cardioprotection against air pollution, but these protections have not been established in the brain. We tested whether diets rich in omega-3 or -6 fatty acids offered neuroprotective benefits, by measuring mitochondrial complex enzyme I, II and IV activities and oxidative stress measures in the frontal cortex, cerebellum, hypothalamus, and hippocampus of male rats that were fed either a normal diet, or a diet enriched with fish oil olive oil, or coconut oil followed by exposure to either filtered air or ozone (0.8 ppm) for 4 h/day for 2 days. Results show that mitochondrial complex I enzyme activity was significantly decreased in the cerebellum, hypothalamus and hippocampus by diets. Complex II enzyme activity was significantly lower in frontal cortex and cerebellum of rats maintained on all test diets. Complex IV enzyme activity was significantly lower in the frontal cortex, hypothalamus and hippocampus of animals maintained on fish oil. Ozone exposure decreased complex I and II activity in the cerebellum of rats maintained on the normal diet, an effect blocked by diet treatments. While diet and ozone have no apparent influence on endogenous reactive oxygen species production, they do affect antioxidant levels in the brain. Fish oil was the only diet that ozone exposure did not alter. Microglial morphology and GFAP immunoreactivity were assessed across diet groups; results indicated that fish oil consistently decreased reactive microglia in the hypothalamus and hippocampus. These results indicate that acute ozone exposure alters mitochondrial bioenergetics in brain and co-treatment with omega-6 and omega-3 fatty acids alleviate some adverse effects within the brain.


Asunto(s)
Encéfalo/metabolismo , Aceite de Coco/farmacología , Metabolismo Energético/efectos de los fármacos , Aceites de Pescado/farmacología , Mitocondrias/metabolismo , Aceite de Oliva/farmacología , Animales , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-6/farmacología , Proteína Ácida Fibrilar de la Glía/metabolismo , Masculino , Microglía/metabolismo , Ratas , Ratas Endogámicas WKY
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA