Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur J Nutr ; 61(5): 2711-2723, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35253072

RESUMEN

PURPOSE: Carotenoids may protect against chronic diseases including cancer and cardiometabolic disease by mitigating oxidative stress and/or inflammation. We cross-sectionally evaluated associations between carotenoids and biomarkers of oxidative stress or inflammation. METHODS: From 2003 to 2009, the Sister Study enrolled 50,884 breast cancer-free US women aged 35-74. Post-menopausal participants (n = 512) were randomly sampled to measure carotenoids and biomarkers of oxidative stress. Dietary carotenoid consumption was assessed using a validated 110-item Block 1998 food frequency questionnaire; use of ß-carotene-containing supplements was also assessed. Plasma carotenoids were quantified, adjusting for batch. Urinary markers of lipid peroxidation, 8-iso-prostaglandin F2α (8-iso-PGF2α) and its metabolite (8-iso-PGF2α-M) were also measured. Since the biomarker 8-iso-PGF2α can reflect both oxidative stress and inflammation, we used a modeled 8-iso-PGF2α to prostaglandin F2α ratio approach to distinguish effects reflecting oxidative stress versus inflammation. Multivariable linear regression was used to assess the associations of dietary and plasma carotenoids with the estimated biomarker concentrations. RESULTS: Total plasma carotenoids were inversely associated with 8-iso-PGF2α-M concentrations (P for trend across quartiles = 0.009). Inverse trends associations were also seen for α-carotene and ß-carotene. In contrast, lutein/zeaxanthin showed associations with both 8-iso-PGF2α and 8-iso-PGF2α-M concentrations. The inverse association for total carotenoids appeared to be specific for oxidative stress (chemical 8-iso-PGF2α; Phighest vs. lowest quartile = 0.04 and P for trend across quartiles = 0.02). The pattern was similar for α-carotene. However, lutein/zeaxanthin tended to have a stronger association with enzymatic 8-iso-PGF2α, suggesting an additional anti-inflammatory effect. Supplemental ß-carotene was inversely associated with both 8-iso-PGF2α and 8-iso-PGF2α-M concentrations, as well as with both chemical and enzymatic 8-iso-PGF2α. Dietary carotenoids were not associated with either biomarker. CONCLUSION: Plasma carotenoids and supplemental ß-carotene were associated with lower concentrations of 8-iso-PGF2α metabolite. Plasma carotenoids associations may reflect antioxidant effects.


Asunto(s)
F2-Isoprostanos , Isoprostanos , Biomarcadores , Carotenoides , Dinoprost , F2-Isoprostanos/farmacología , Femenino , Humanos , Inflamación/metabolismo , Luteína , Estrés Oxidativo , Zeaxantinas/metabolismo , Zeaxantinas/farmacología , beta Caroteno
2.
PLoS One ; 15(10): e0240244, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33095772

RESUMEN

Oxidative stress is a biological imbalance in reactive oxygen species and antioxidants. Increased oxidative stress during pregnancy has been associated with adverse birth outcomes. Omega-3 fatty acid (n-3 FA) supplementation may decrease oxidative stress; however, this relationship is seldom examined during pregnancy. This study assessed the association between n-3 FA supplement use during pregnancy and urinary oxidative stress biomarker concentrations. Data came from The Infant Development and the Environment Study (TIDES), a prospective cohort study that recruited pregnant women in 4 US cities between 2010-2012. Third trimester n-3 FA intake was self-reported. Third trimester urinary 8-iso-prostaglandin F2α (8-iso-PGF2α) was measured as an oxidative stress biomarker. Additionally, we measured the major metabolite of 8-iso-PGF2α and Prostaglandin F2α (PGF2α) and utilized the 8-iso-PGF2α to PGF2α ratio to calculate the change in 8-iso-PGF2α reflecting oxidative stress versus inflammation. Adjusted linear models were used to determine associations with control for confounding. Of 725 women, 165 reported n-3 FA supplement use in the third trimester. In adjusted linear models, n-3 FA use was associated with 10.2% lower levels of 8-iso-PGF2α (95% Confidence Interval [CI]: -19.6, 0.25) and 10.3% lower levels of the metabolite (95% CI: -17.1, -2.91). No associations were observed with PGF2α. The lower levels of 8-iso-PGF2α appeared to reflect a decrease in oxidative stress (percent change with supplement use: -18.7, 95% CI: -30.1, -5.32) rather than inflammation. Overall, third trimester n-3 FA intake was associated with lower concentrations of 8-iso-PGF2α and its metabolite, suggesting a decrease in maternal oxidative stress during pregnancy.


Asunto(s)
Ácidos Grasos Omega-3/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Adulto , Antioxidantes/uso terapéutico , Suplementos Dietéticos , Femenino , Humanos , Oxidación-Reducción/efectos de los fármacos , Embarazo , Tercer Trimestre del Embarazo , Estudios Prospectivos , Encuestas y Cuestionarios
3.
Redox Biol ; 17: 284-296, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29775960

RESUMEN

The widespread detection of elevated oxidative stress levels in many medical conditions has led to numerous efforts to design interventions to reduce its effects. Efforts have been wide-ranging, from dietary changes to administration of antioxidants, supplements, e.g., omega-3-fatty acids, and many medications. However, there is still no systemic assessment of the efficacy of treatments for oxidative stress reduction across a variety of medical conditions. The goal of this meta-analysis is, by combining multiple studies, to quantitate the change in the levels of the popular oxidative stress biomarker 8-iso-prostaglandin F2α (8-iso-PGF2α) after a variety of treatment strategies in human populations. Nearly 350 unique publications with 180 distinct strategies were included in the analysis. For each strategy, the difference between pre- or placebo and post-treatment levels calculated using Hedges' g value of effect. In general, administration of antibiotics, antihyperlipidemic agents, or changes in lifestyle (g = - 0.63, - 0.54, and 0.56) had the largest effect. Administration of supplements, antioxidants, or changes in diet (g = - 0.09, - 0.28, - 0.12) had small quantitative effects. To fully interpret the effectiveness of these treatments, comparisons to the increase in g value for each medical condition is required. For example, antioxidants in populations with coronary artery disease (CAD) reduce the 8-iso-PGF2α levels by g = - 0.34 ±â€¯0.1, which is quantitatively considered a small effect. However, CAD populations, in comparison to healthy populations, have an increase in 8-iso-PGF2α levels by g = 0.38 ±â€¯0.04; therefore, the overall reduction of 8-iso-PGF2α levels is ≈ 90% by this treatment in this specific medical condition. In conclusion, 8-iso-PGF2α levels can be reduced not only by antioxidants but by many other strategies. Not all strategies are equally effective at reducing 8-iso-PGF2α levels. In addition, the effectiveness of any strategy can be assessed only in relation to the medical condition investigated.


Asunto(s)
Biomarcadores/sangre , Enfermedad de la Arteria Coronaria/sangre , Dinoprost/análogos & derivados , Estrés Oxidativo/genética , Antioxidantes/uso terapéutico , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/prevención & control , Suplementos Dietéticos , Dinoprost/sangre , Dinoprost/genética , Genética de Población , Humanos , Peroxidación de Lípido/genética , Oxidación-Reducción/efectos de los fármacos
4.
PLoS One ; 10(7): e0132572, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26172833

RESUMEN

BACKGROUND: The biological consequences upon exposure of cells in culture to a dose of xenobiotic are not only dependent on biological variables, but also the physical aspects of experiments e.g. cell number and media volume. Dependence on physical aspects is often overlooked due to the unrecognized ambiguity in the dominant metric used to express exposure, i.e. initial concentration of xenobiotic delivered to the culture medium over the cells. We hypothesize that for many xenobiotics, specifying dose as moles per cell will reduce this ambiguity. Dose as moles per cell can also provide additional information not easily obtainable with traditional dosing metrics. METHODS: Here, 1,4-benzoquinone and oligomycin A are used as model compounds to investigate moles per cell as an informative dosing metric. Mechanistic insight into reactions with intracellular molecules, differences between sequential and bolus addition of xenobiotic and the influence of cell volume and protein content on toxicity are also investigated. RESULTS: When the dose of 1,4-benzoquinone or oligomycin A was specified as moles per cell, toxicity was independent of the physical conditions used (number of cells, volume of medium). When using moles per cell as a dose-metric, direct quantitative comparisons can be made between biochemical or biological endpoints and the dose of xenobiotic applied. For example, the toxicity of 1,4-benzoquinone correlated inversely with intracellular volume for all five cell lines exposed (C6, MDA-MB231, A549, MIA PaCa-2, and HepG2). CONCLUSIONS: Moles per cell is a useful and informative dosing metric in cell culture. This dosing metric is a scalable parameter that: can reduce ambiguity between experiments having different physical conditions; provides additional mechanistic information; allows direct comparison between different cells; affords a more uniform platform for experimental design; addresses the important issue of repeatability of experimental results, and could increase the translatability of information gained from in vitro experiments.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Xenobióticos/administración & dosificación , Benzoquinonas/administración & dosificación , Benzoquinonas/toxicidad , Recuento de Células , Línea Celular , Tamaño de la Célula , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/estadística & datos numéricos , Glutatión/metabolismo , Células Hep G2 , Humanos , Modelos Biológicos , Oligomicinas/administración & dosificación , Oligomicinas/toxicidad , Concentración Osmolar , Proteínas/metabolismo , Reproducibilidad de los Resultados , Xenobióticos/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA