Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 20802, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34675257

RESUMEN

Campylobacter hepaticus causes Spotty Liver Disease (SLD) in chickens. C. hepaticus is fastidious and slow-growing, presenting difficulties when growing this bacterium for the preparation of bacterin vaccines and experimental disease challenge trials. This study applied genomic analysis and in vitro experiments to develop an enhanced C. hepaticus liquid culture method. In silico analysis of the anabolic pathways encoded by C. hepaticus revealed that the bacterium is unable to biosynthesise L-cysteine, L-lysine and L-arginine. It was found that L-cysteine added to Brucella broth, significantly enhanced the growth of C. hepaticus, but L-lysine or L-arginine addition did not enhance growth. Brucella broth supplemented with L-cysteine (0.4 mM), L-glutamine (4 mM), and sodium pyruvate (10 mM) gave high-density growth of C. hepaticus and resulted in an almost tenfold increase in culture density compared to the growth in Brucella broth alone (log10 = 9.3 vs 8.4 CFU/mL). The type of culture flask used also significantly affected C. hepaticus culture density. An SLD challenge trial demonstrated that C. hepaticus grown in the enhanced culture conditions retained full virulence. The enhanced liquid culture method developed in this study enables the efficient production of bacterial biomass and therefore facilitates further studies of SLD biology and vaccine development.


Asunto(s)
Campylobacter/crecimiento & desarrollo , Pollos/microbiología , Enfermedades de las Aves de Corral/microbiología , Animales , Campylobacter/aislamiento & purificación , Suplementos Dietéticos , Hepatopatías/microbiología , Hepatopatías/veterinaria
2.
Poult Sci ; 100(11): 101423, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34534853

RESUMEN

Spotty liver disease (SLD) is a serious condition affecting extensively housed laying hens. The causative bacterium was described in 2015 and characterized in 2016 and named Campylobacter hepaticus. Antibiotics are the only tool currently available to combat SLD. However, antimicrobial resistance has already been detected, so finding therapeutic alternatives is imperative. Isoquinoline alkaloids (IQA), such as sanguinarine and chelerythrine, have been shown to have immunomodulatory effects. It has been hypothesized that IQA could ameliorate some of the deleterious effects of SLD. This study aimed to address that hypothesis in an experimental disease induction model. Birds were fed with diets containing 2 different doses of an IQA containing product, 100 mg of product/kg of feed (0.5 ppm of sanguinarine) and 200 mg of product/kg of feed (1.0 ppm of sanguinarine). Two additional groups remained untreated (a challenged positive control and an unchallenged negative control). After 4 wk of treatment, birds from all groups except the negative control group were exposed to C. hepaticus strain HV10. The IQA treated groups showed a reduction in the number of miliary lesions on the liver surface and reduced lesion scores compared with untreated hens. A significant reduction of egg mass was detected 6 d after exposure to C. hepaticus in the untreated group (P = 0.02). However, there was not a significant drop in egg-mass in the IQA groups, especially those fed with a high dose of IQA (P = 0.93). IQA supplementation did not produce significant changes in intestinal villus height and crypt depth but did result in a significant reduction in the proinflammatory cytokine, interleukin-8, in the blood (P < 0.01). Microbiota analysis showed that IQA treatment did not alter the alpha diversity of the cecal microbiota but did produce changes in the phylogenetic structure, with the higher dose of IQA increasing the Firmicutes/Bacteroidetes ratio. Other minor changes in production indicators included an increase in feed consumption (P < 0.01) and an increase in body weight of the treated hens (P < 0.0001). The present study has demonstrated that IQA confers some protection of chickens from the impact of SLD.


Asunto(s)
Infecciones por Campylobacter , Hepatopatías , Enfermedades de las Aves de Corral , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Campylobacter , Infecciones por Campylobacter/veterinaria , Pollos , Dieta/veterinaria , Suplementos Dietéticos , Femenino , Isoquinolinas , Hepatopatías/veterinaria , Filogenia , Enfermedades de las Aves de Corral/prevención & control
3.
Appl Microbiol Biotechnol ; 102(3): 1455-1466, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29250719

RESUMEN

The poultry industry aims to improve productivity while maintaining the health and welfare of flocks. Pathogen control has been achieved through biosecurity, vaccinations and the use of antibiotics. However, the emergence of antibiotic resistance, in animal and human pathogens, has prompted researchers and chicken growers alike to seek alternative approaches. The use of new and emerging approaches to combat pathogen activity including nanotechnology, in particular, silver nanoparticles (NPs), has been found to not only eradicate pathogenic bacteria but also include issues of toxicity and bioaccumulation effects. Other novel metal nanoparticles could provide this pathogen reducing property with a more tailored and biocompatible nanomaterial for the model used, something our study represents. This study investigated the benefits of nanomaterial delivery mechanisms coupled with important health constituents using selenium as a biocompatible metal to minimise toxicity properties. Selenium NPs were compared to two common forms of bulk selenium macronutrients already used in the poultry industry. An intermediate concentration of selenium nanoparticles (0.9 mg/kg) demonstrated the best performance, improving the gut health by increasing the abundance of beneficial bacteria, such as Lactobacillus and Faecalibacterium, and short-chain fatty acids (SCFAs), in particular butyric acid. SCFAs are metabolites produced by the intestinal tract and are used as an energy source for colonic cells and other important bodily functions. Selenium nanoparticles had no significant effect on live weight gain or abundance of potentially pathogenic bacteria.


Asunto(s)
Alimentación Animal , Faecalibacterium prausnitzii/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Nanopartículas del Metal/administración & dosificación , Selenio/administración & dosificación , Animales , Butiratos/metabolismo , Pollos , Faecalibacterium prausnitzii/aislamiento & purificación , Ácidos Grasos Volátiles/biosíntesis , Heces/microbiología , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/microbiología , Lactobacillus/efectos de los fármacos , Nanopartículas del Metal/química , Aves de Corral , Selenio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA