Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Drug Discov ; 22(4): 317-335, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36781957

RESUMEN

For decades, preclinical toxicology was essentially a descriptive discipline in which treatment-related effects were carefully reported and used as a basis to calculate safety margins for drug candidates. In recent years, however, technological advances have increasingly enabled researchers to gain insights into toxicity mechanisms, supporting greater understanding of species relevance and translatability to humans, prediction of safety events, mitigation of side effects and development of safety biomarkers. Consequently, investigative (or mechanistic) toxicology has been gaining momentum and is now a key capability in the pharmaceutical industry. Here, we provide an overview of the current status of the field using case studies and discuss the potential impact of ongoing technological developments, based on a survey of investigative toxicologists from 14 European-based medium-sized to large pharmaceutical companies.


Asunto(s)
Industria Farmacéutica , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Biomarcadores , Tecnología , Evaluación Preclínica de Medicamentos
2.
ALTEX ; 36(2): 289-313, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30570669

RESUMEN

Investigative Toxicology describes the de-risking and mechanistic elucidation of toxicities, supporting early safety decisions in the pharmaceutical industry. Recently, Investigative Toxicology has contributed to a shift in pharmaceutical toxicology, from a descriptive to an evidence-based, mechanistic discipline. This was triggered by high costs and low throughput of Good Laboratory Practice in vivo studies, and increasing demands for adhering to the 3R (Replacement, Reduction and Refinement) principles of animal welfare. Outside the boundaries of regulatory toxicology, Investigative Toxicology has the flexibility to embrace new technologies, enhancing translational steps from in silico, in vitro to in vivo mechanistic understanding to eventually predict human response. One major goal of Investigative Toxicology is improving preclinical decisions, which coincides with the concept of animal-free safety testing. Currently, compounds under preclinical development are being discarded due to the use of inappropriate animal models. Progress in Investigative Toxicology could lead to humanized in vitro test systems and the development of medicines less reliant on animal tests. To advance this field a group of 14 European-based leaders from the pharmaceutical industry founded the Investigative Toxicology Leaders Forum (ITLF), an open, non-exclusive and pre-competitive group that shares knowledge and experience. The ITLF collaborated with the Centre for Alternatives to Animal Testing Europe (CAAT-Europe) to organize an "Investigative Toxicology Think-Tank", which aimed to enhance the interaction with experts from academia and regulatory bodies in the field. Summarizing the topics and discussion of the workshop, this article highlights Investigative Toxicology's position by identifying key challenges and perspectives.


Asunto(s)
Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos/tendencias , Toxicología/tendencias , Alternativas a las Pruebas en Animales , Animales , Simulación por Computador , Industria Farmacéutica , Europa (Continente) , Humanos , Técnicas In Vitro , Medición de Riesgo
3.
Toxicol In Vitro ; 24(5): 1417-25, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20430096

RESUMEN

Drug-induced phospholipidosis is a side effect for which drug candidates can be screened in the drug discovery phase. The numerous in silico models that have been developed as a first line of screening are based on the characteristic physicochemical properties of phospholipidosis-inducing drugs, e.g. high logP and pK(b) values. However, applying these models on a predominantly high lipophilic, basic CNS chemistry results in a high false positive rate and consequently in a wrong classification of a large number of valuable drug candidates. Here, we tested 33 CNS-compounds (24 in vivo negative and 9 in vivo positive phospholipidosis-inducers) in our in house developed in vitro phospholipidosis screening assay (Mesens et al., 2009) and compared its predictivity with the outcome of three different, well established in silico prediction models. Our in vitro assay demonstrates an increased specificity of 79% over the in silico models (29%). Moreover, by considering the proposed plasma concentration at the efficacious dose we can show a clear correlation between the in vitro and in vivo occurrence of phospholipidosis, improving the specificity of prediction to 96%. Through its high predictive value, the in vitro low throughput assay is thus preferred above high throughput in silico assays, characterized by a high false positive rate.


Asunto(s)
Fármacos del Sistema Nervioso Central/toxicidad , Ensayos Analíticos de Alto Rendimiento , Lipidosis/inducido químicamente , Fosfolípidos/metabolismo , Línea Celular , Fármacos del Sistema Nervioso Central/administración & dosificación , Simulación por Computador , Evaluación Preclínica de Medicamentos/métodos , Humanos , Lipidosis/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA