Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microb Cell Fact ; 22(1): 254, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38072930

RESUMEN

BACKGROUND: It is increasingly recognized that conventional food production systems are not able to meet the globally increasing protein needs, resulting in overexploitation and depletion of resources, and environmental degradation. In this context, microbial biomass has emerged as a promising sustainable protein alternative. Nevertheless, often no consideration is given on the fact that the cultivation conditions affect the composition of microbial cells, and hence their quality and nutritional value. Apart from the properties and nutritional quality of the produced microbial food (ingredient), this can also impact its sustainability. To qualitatively assess these aspects, here, we investigated the link between substrate availability, growth rate, cell composition and size of Cupriavidus necator and Komagataella phaffii. RESULTS: Biomass with decreased nucleic acid and increased protein content was produced at low growth rates. Conversely, high rates resulted in larger cells, which could enable more efficient biomass harvesting. The proteome allocation varied across the different growth rates, with more ribosomal proteins at higher rates, which could potentially affect the techno-functional properties of the biomass. Considering the distinct amino acid profiles established for the different cellular components, variations in their abundance impacts the product quality leading to higher cysteine and phenylalanine content at low growth rates. Therefore, we hint that costly external amino acid supplementations that are often required to meet the nutritional needs could be avoided by carefully applying conditions that enable targeted growth rates. CONCLUSION: In summary, we demonstrate tradeoffs between nutritional quality and production rate, and we discuss the microbial biomass properties that vary according to the growth conditions.


Asunto(s)
Aminoácidos , Proteoma , Biomasa , Cisteína , Tamaño de la Célula
2.
J Virol ; 96(19): e0129722, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36102648

RESUMEN

Human respiratory syncytial virus (RSV) is the leading cause of severe acute lower respiratory tract infections in infants worldwide. Nonstructural protein NS1 of RSV modulates the host innate immune response by acting as an antagonist of type I and type III interferon (IFN) production and signaling in multiple ways. Likely, NS1 performs this function by interacting with different host proteins. In order to obtain a comprehensive overview of the NS1 interaction partners, we performed three complementary protein-protein interaction screens, i.e., BioID, MAPPIT, and KISS. To closely mimic a natural infection, the BioID proximity screen was performed using a recombinant RSV in which the NS1 protein is fused to a biotin ligase. Remarkably, MED25, a subunit of the Mediator complex, was identified in all three performed screening methods as a potential NS1-interacting protein. We confirmed the interaction between MED25 and RSV NS1 by coimmunoprecipitation, not only upon overexpression of NS1 but also with endogenous NS1 during RSV infection. We also demonstrate that the replication of RSV can be enhanced in MED25 knockout A549 cells, suggesting a potential antiviral role of MED25 during RSV infection. Mediator subunits function as transcriptional coactivators and are involved in transcriptional regulation of their target genes. Therefore, the interaction between RSV NS1 and cellular MED25 might be beneficial for RSV during infection by affecting host transcription and the host immune response to infection. IMPORTANCE Innate immune responses, including the production of type I and III interferons, play a crucial role in the first line of defense against RSV infection. However, only a poor induction of type I IFNs is observed during RSV infection, suggesting that RSV has evolved mechanisms to prevent type I IFN expression by the infected host cell. A unique RSV protein, NS1, is largely responsible for this effect, probably through interaction with multiple host proteins. A better understanding of the interactions that occur between RSV NS1 and host proteins may help to identify targets for an effective antiviral therapy. We addressed this question by performing three complementary protein-protein interaction screens and identified MED25 as an RSV NS1-interacting protein. We propose a role in innate anti-RSV defense for this Mediator complex subunit.


Asunto(s)
Complejo Mediador , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Proteínas no Estructurales Virales , Células A549 , Humanos , Interferones/metabolismo , Complejo Mediador/genética , Complejo Mediador/metabolismo , Infecciones por Virus Sincitial Respiratorio/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA