Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Circ Res ; 89(6): E32-8, 2001 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-11557745

RESUMEN

Atrial fibrillation (AF), the most common chronic arrhythmia, increases the risk of stroke and is an independent predictor of mortality. Available pharmacological treatments have limited efficacy. Once initiated, AF tends to self-perpetuate, owing in part to electrophysiological remodeling in the atria; however, the fundamental mechanisms underlying this process are still unclear. We have recently demonstrated that chronic human AF is associated with increased atrial oxidative stress and peroxynitrite formation; we have now tested the hypothesis that these events participate in both pacing-induced atrial electrophysiological remodeling and in the occurrence of AF following cardiac surgery. In chronically instrumented dogs, we found that rapid (400 min(-1)) atrial pacing was associated with attenuation of the atrial effective refractory period (ERP). Treatment with ascorbate, an antioxidant and peroxynitrite decomposition catalyst, did not directly modify the ERP, but attenuated the pacing-induced atrial ERP shortening following 24 to 48 hours of pacing. Biochemical studies revealed that pacing was associated with decreased tissue ascorbate levels and increased protein nitration (a biomarker of peroxynitrite formation). Oral ascorbate supplementation attenuated both of these changes. To evaluate the clinical significance of these observations, supplemental ascorbate was given to 43 patients before, and for 5 days following, cardiac bypass graft surgery. Patients receiving ascorbate had a 16.3% incidence of postoperative AF, compared with 34.9% in control subjects. In combination, these studies suggest that oxidative stress underlies early atrial electrophysiological remodeling and offer novel insight into the etiology and potential treatment of an enigmatic and difficult to control arrhythmia. The full text of this article is available at http://www.circresaha.org.


Asunto(s)
Antioxidantes/farmacología , Ácido Ascórbico/farmacología , Fibrilación Atrial/prevención & control , Nitratos/metabolismo , Tirosina/análogos & derivados , Anciano , Animales , Antioxidantes/uso terapéutico , Ácido Ascórbico/metabolismo , Ácido Ascórbico/uso terapéutico , Fibrilación Atrial/etiología , Fibrilación Atrial/fisiopatología , Estimulación Cardíaca Artificial/efectos adversos , Puente de Arteria Coronaria/efectos adversos , Perros , Electrofisiología , Femenino , Atrios Cardíacos/efectos de los fármacos , Atrios Cardíacos/metabolismo , Atrios Cardíacos/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Factores de Tiempo , Resultado del Tratamiento , Tirosina/metabolismo
2.
J Biol Chem ; 275(8): 5997-6006, 2000 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-10681594

RESUMEN

One form of inherited long QT syndrome, LQT2, results from mutations in HERG1, the human ether-a-go-go-related gene, which encodes a voltage-gated K(+) channel alpha subunit. Heterologous expression of HERG1 gives rise to K(+) currents that are similar (but not identical) to the rapid component of delayed rectification, I(Kr), in cardiac myocytes. In addition, N-terminal splice variants of HERG1 and MERG1 (mouse ERG1) referred to as HERG1b and MERG1b have been cloned and suggested to play roles in the generation of functional I(Kr) channels. In the experiments here, antibodies generated against HERG1 were used to examine ERG1 protein expression in heart and in brain. In Western blots of extracts of QT-6 cells expressing HERG1, MERG1, or RERG1 (rat ERG1) probed with antibodies targeted against the C terminus of HERG1, a single 155-kDa protein is identified, whereas a 95-kDa band is evident in blots of extracts from cells expressing MERG1b or HERG1b. In immunoblots of fractionated rat (and mouse) brain and heart membrane proteins, however, two prominent high molecular mass proteins of 165 and 205 kDa were detected. Following treatment with glycopeptidase F, the 165- and 205-kDa proteins were replaced by two new bands at 175 and 130 kDa, suggesting that ERG1 is differentially glycosylated in rat/mouse brain and heart. In human heart, a single HERG1 protein with an apparent molecular mass of 145 kDa is evident. In rats, ERG1 protein (and I(Kr)) expression is higher in atria than ventricles, whereas in humans, HERG1 expression is higher in ventricular, than atrial, tissue. Taken together, these results suggest that the N-terminal alternatively spliced variants of ERG1 (i.e. ERG1b) are not expressed at the protein level in rat, mouse, or human heart and that these variants do not, therefore, play roles in the generation of functional cardiac I(Kr) channels.


Asunto(s)
Proteínas de Transporte de Catión , Proteínas de Unión al ADN , Miocardio/metabolismo , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/metabolismo , Transactivadores , Secuencia de Aminoácidos , Animales , Línea Celular , ADN Complementario/metabolismo , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go , Fibroblastos/metabolismo , Glicosilación , Humanos , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Técnicas de Placa-Clamp , Isoformas de Proteínas , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley , Homología de Secuencia de Aminoácido , Distribución Tisular , Regulador Transcripcional ERG , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA