Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Endocrinology ; 157(3): 1211-21, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26779746

RESUMEN

The hypothalamic-pituitary-thyroid axis is governed by hypophysiotropic TRH-synthesizing neurons located in the hypothalamic paraventricular nucleus under control of the negative feedback of thyroid hormones. The mechanisms underlying the ontogeny of this phenomenon are poorly understood. We aimed to determine the onset of thyroid hormone-mediated hypothalamic-negative feedback and studied how local hypothalamic metabolism of thyroid hormones could contribute to this process in developing chicken. In situ hybridization revealed that whereas exogenous T4 did not induce a statistically significant inhibition of TRH expression in the paraventricular nucleus at embryonic day (E)19, T4 treatment was effective at 2 days after hatching (P2). In contrast, TRH expression responded to T3 treatment in both age groups. TSHß mRNA expression in the pituitary responded to T4 in a similar age-dependent manner. Type 2 deiodinase (D2) was expressed from E13 in tanycytes of the mediobasal hypothalamus, and its activity increased between E15 and P2 both in the mediobasal hypothalamus and in tanycyte-lacking hypothalamic regions. Nkx2.1 was coexpressed with D2 in E13 and P2 tanycytes and transcription of the cdio2 gene responded to Nkx2.1 in U87 glioma cells, indicating its potential role in the developmental regulation of D2 activity. The T3-degrading D3 enzyme was also detected in tanycytes, but its level was not markedly changed before and after the period of negative feedback acquisition. These findings suggest that increasing the D2-mediated T3 generation during E18-P2 could provide the sufficient local T3 concentration required for the onset of T3-dependent negative feedback in the developing chicken hypothalamus.


Asunto(s)
Retroalimentación Fisiológica/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Sistema Hipotálamo-Hipofisario/metabolismo , Yoduro Peroxidasa/metabolismo , Neuronas/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , ARN Mensajero/metabolismo , Glándula Tiroides/metabolismo , Hormona Liberadora de Tirotropina/metabolismo , Tiroxina/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/embriología , Encéfalo/metabolismo , Línea Celular Tumoral , Embrión de Pollo , Células Ependimogliales/efectos de los fármacos , Células Ependimogliales/metabolismo , Retroalimentación Fisiológica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Sistema Hipotálamo-Hipofisario/embriología , Hipotálamo/efectos de los fármacos , Hipotálamo/embriología , Hipotálamo/metabolismo , Inmunohistoquímica , Hibridación in Situ , Yoduro Peroxidasa/efectos de los fármacos , Neuronas/efectos de los fármacos , Proteínas Nucleares/efectos de los fármacos , Proteínas Nucleares/metabolismo , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/embriología , Hipófisis/efectos de los fármacos , Hipófisis/metabolismo , ARN Mensajero/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor Nuclear Tiroideo 1 , Tirotropina de Subunidad beta/genética , Tiroxina/farmacología , Factores de Transcripción/efectos de los fármacos , Factores de Transcripción/metabolismo , Triyodotironina/efectos de los fármacos , Triyodotironina/metabolismo , Yodotironina Deyodinasa Tipo II
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA