Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Endocrinology ; 163(1)2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34698826

RESUMEN

PURPOSE: Sepsis is hallmarked by high plasma cortisol/corticosterone (CORT), low adrenocorticotropic hormone (ACTH), and high pro-opiomelanocortin (POMC). While corticotropin-releasing hormone-(CRH) and arginine-vasopressin (AVP)-driven pituitary POMC expression remains active, POMC processing into ACTH becomes impaired. Low ACTH is accompanied by loss of adrenocortical structure, although steroidogenic enzymes remain expressed. We hypothesized that treatment of sepsis with hydrocortisone (HC) aggravates this phenotype whereas CRH infusion safeguards ACTH-driven adrenocortical structure. METHODS: In a fluid-resuscitated, antibiotics-treated mouse model of prolonged sepsis, we compared the effects of HC and CRH infusion with placebo on plasma ACTH, POMC, and CORT; on markers of hypothalamic CRH and AVP signaling and pituitary POMC processing; and on the adrenocortical structure and markers of steroidogenesis. In adrenal explants, we studied the steroidogenic capacity of POMC. RESULTS: During sepsis, HC further suppressed plasma ACTH, but not POMC, predominantly by suppressing sepsis-activated CRH/AVP-signaling pathways. In contrast, in CRH-treated sepsis, plasma ACTH was normalized following restoration of pituitary POMC processing. The sepsis-induced rise in markers of adrenocortical steroidogenesis was unaltered by CRH and suppressed partially by HC, which also increased adrenal markers of inflammation. Ex vivo stimulation of adrenal explants with POMC increased CORT as effectively as an equimolar dose of ACTH. CONCLUSIONS: Treatment of sepsis with HC impaired integrity and function of the hypothalamic-pituitary-adrenal axis at the level of the pituitary and the adrenal cortex while CRH restored pituitary POMC processing without affecting the adrenal cortex. Sepsis-induced high-circulating POMC may be responsible for ongoing adrenocortical steroidogenesis despite low ACTH.


Asunto(s)
Hormona Liberadora de Corticotropina/administración & dosificación , Hidrocortisona/administración & dosificación , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Sepsis/metabolismo , Hormona Adrenocorticotrópica/metabolismo , Animales , Arginina Vasopresina/química , Corticosterona/sangre , Hipotálamo/metabolismo , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo , Hipófisis/metabolismo , Adenohipófisis/metabolismo , Proopiomelanocortina/química , Sepsis/fisiopatología , Transducción de Señal
2.
BMC Pharmacol Toxicol ; 22(1): 50, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34544493

RESUMEN

BACKGROUND: In septic mice, supplementing parenteral nutrition with 150 mg/day 3-hydroxybutyrate-sodium-salt (3HB-Na) has previously shown to prevent muscle weakness without obvious toxicity. The main objective of this study was to identify the toxic threshold of 3HB-Na supplementation in septic mice, prior to translation of this promising intervention to human use. METHODS: In a centrally-catheterized, antibiotic-treated, fluid-resuscitated, parenterally fed mouse model of prolonged sepsis, we compared with placebo the effects of stepwise escalating doses starting from 150 mg/day 3HB-Na on illness severity and mortality (n = 103). For 5-day survivors, also the impact on ex-vivo-measured muscle force, blood electrolytes, and markers of vital organ inflammation/damage was documented. RESULTS: By doubling the reference dose of 150 mg/day to 300 mg/day 3HB-Na, illness severity scores doubled (p = 0.004) and mortality increased from 30.4 to 87.5 % (p = 0.002). De-escalating this dose to 225 mg still increased mortality (p ≤ 0.03) and reducing the dose to 180 mg/day still increased illness severity (p ≤ 0.04). Doses of 180 mg/day and higher caused more pronounced metabolic alkalosis and hypernatremia (p ≤ 0.04) and increased markers of kidney damage (p ≤ 0.05). Doses of 225 mg/day 3HB-Na and higher caused dehydration of brain and lungs (p ≤ 0.05) and increased markers of hippocampal neuronal damage and inflammation (p ≤ 0.02). Among survivors, 150 mg/day and 180 mg/day increased muscle force compared with placebo (p ≤ 0.05) up to healthy control levels (p ≥ 0.3). CONCLUSIONS: This study indicates that 150 mg/day 3HB-Na supplementation prevented sepsis-induced muscle weakness in mice. However, this dose appeared maximally effective though close to the toxic threshold, possibly in part explained by excessive Na+ intake with 3HB-Na. Although lower doses were not tested and thus might still hold therapeutic potential, the current results point towards a low toxic threshold for the clinical use of ketone salts in human critically ill patients. Whether 3HB-esters are equally effective and less toxic should be investigated.


Asunto(s)
Ácido 3-Hidroxibutírico/administración & dosificación , Suplementos Dietéticos , Debilidad Muscular/terapia , Sepsis/terapia , Ácido 3-Hidroxibutírico/efectos adversos , Equilibrio Ácido-Base , Aldosterona/sangre , Animales , Encéfalo/patología , Suplementos Dietéticos/efectos adversos , Relación Dosis-Respuesta a Droga , Infusiones Parenterales , Cetonas/metabolismo , Riñón/patología , Hígado/patología , Masculino , Dosis Máxima Tolerada , Ratones Endogámicos C57BL , Debilidad Muscular/etiología , Debilidad Muscular/patología , Sepsis/complicaciones , Sepsis/patología , Índice de Severidad de la Enfermedad
3.
Crit Care ; 25(1): 252, 2021 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-34274000

RESUMEN

BACKGROUND: Muscle weakness is a complication of critical illness which hampers recovery. In critically ill mice, supplementation with the ketone body 3-hydroxybutyrate has been shown to improve muscle force and to normalize illness-induced hypocholesterolemia. We hypothesized that altered cholesterol homeostasis is involved in development of critical illness-induced muscle weakness and that this pathway can be affected by 3-hydroxybutyrate. METHODS: In both human critically ill patients and septic mice, the association between circulating cholesterol concentrations and muscle weakness was assessed. In septic mice, the impact of 3-hydroxybutyrate supplementation on cholesterol homeostasis was evaluated with use of tracer technology and through analysis of markers of cholesterol metabolism and downstream pathways. RESULTS: Serum cholesterol concentrations were lower in weak than in non-weak critically ill patients, and in multivariable analysis adjusting for baseline risk factors, serum cholesterol was inversely correlated with weakness. In septic mice, plasma cholesterol correlated positively with muscle force. In septic mice, exogenous 3-hydroxybutyrate increased plasma cholesterol and altered cholesterol homeostasis, by normalization of plasma mevalonate and elevation of muscular, but not hepatic, expression of cholesterol synthesis genes. In septic mice, tracer technology revealed that 3-hydroxybutyrate was preferentially taken up by muscle and metabolized into cholesterol precursor mevalonate, rather than TCA metabolites. The 3-hydroxybutyrate protection against weakness was not related to ubiquinone or downstream myofiber mitochondrial function, whereas cholesterol content in myofibers was increased. CONCLUSIONS: These findings point to a role for low cholesterol in critical illness-induced muscle weakness and to a protective mechanism-of-action for 3-hydroxybutyrate supplementation.


Asunto(s)
Colesterol/análisis , Homeostasis/efectos de los fármacos , Ácido 3-Hidroxibutírico , Anciano , Anciano de 80 o más Años , Animales , Colesterol/metabolismo , Enfermedad Crítica/terapia , Modelos Animales de Enfermedad , Femenino , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL/metabolismo , Ratones Endogámicos C57BL/fisiología , Persona de Mediana Edad , Análisis Multivariante , Debilidad Muscular/fisiopatología
4.
Crit Care ; 23(1): 236, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31262340

RESUMEN

BACKGROUND: ICU-acquired weakness is a debilitating consequence of prolonged critical illness that is associated with poor outcome. Recently, premorbid obesity has been shown to protect against such illness-induced muscle wasting and weakness. Here, we hypothesized that this protection was due to increased lipid and ketone availability. METHODS: In a centrally catheterized, fluid-resuscitated, antibiotic-treated mouse model of prolonged sepsis, we compared markers of lipolysis and fatty acid oxidation in lean and obese septic mice (n = 117). Next, we compared markers of muscle wasting and weakness in septic obese wild-type and adipose tissue-specific ATGL knockout (AAKO) mice (n = 73), in lean septic mice receiving either intravenous infusion of lipids or standard parenteral nutrition (PN) (n = 70), and in lean septic mice receiving standard PN supplemented with either the ketone body 3-hydroxybutyrate or isocaloric glucose (n = 49). RESULTS: Obese septic mice had more pronounced lipolysis (p ≤ 0.05), peripheral fatty acid oxidation (p ≤ 0.05), and ketogenesis (p ≤ 0.05) than lean mice. Blocking lipolysis in obese septic mice caused severely reduced muscle mass (32% loss vs. 15% in wild-type, p < 0.001) and specific maximal muscle force (59% loss vs. 0% in wild-type; p < 0.001). In contrast, intravenous infusion of lipids in lean septic mice maintained specific maximal muscle force up to healthy control levels (p = 0.6), whereas this was reduced with 28% in septic mice receiving standard PN (p = 0.006). Muscle mass was evenly reduced with 29% in both lean septic groups (p < 0.001). Lipid administration enhanced fatty acid oxidation (p ≤ 0.05) and ketogenesis (p < 0.001), but caused unfavorable liver steatosis (p = 0.01) and a deranged lipid profile (p ≤ 0.01). Supplementation of standard PN with 3-hydroxybutyrate also attenuated specific maximal muscle force up to healthy control levels (p = 0.1), but loss of muscle mass could not be prevented (25% loss in both septic groups; p < 0.001). Importantly, this intervention improved muscle regeneration markers (p ≤ 0.05) without the unfavorable side effects seen with lipid infusion. CONCLUSIONS: Obesity-induced muscle protection during sepsis is partly mediated by elevated mobilization and metabolism of endogenous fatty acids. Furthermore, increased availability of ketone bodies, either through ketogenesis or through parenteral infusion, appears to protect against sepsis-induced muscle weakness also in the lean.


Asunto(s)
Tejido Adiposo/fisiopatología , Lipólisis/fisiología , Debilidad Muscular/etiología , Sepsis/complicaciones , Animales , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Ácidos Grasos/farmacocinética , Cetonas/metabolismo , Metabolismo de los Lípidos/fisiología , Masculino , Ratones , Debilidad Muscular/metabolismo , Debilidad Muscular/fisiopatología , Obesidad/fisiopatología , Factores Protectores , Sepsis/metabolismo , Sepsis/fisiopatología
5.
J Clin Endocrinol Metab ; 100(7): 2613-20, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25942482

RESUMEN

BACKGROUND: Nutrition can affect the hypothalamus-pituitary-adrenal axis. We hypothesized that early administration of parenteral nutrition (PN) during critical illness reduces plasma ACTH and cortisol concentrations and thereby increases the use of corticosteroids. METHODS: This is a preplanned substudy of a randomized controlled trial (EPaNIC) that compared early PN with late PN in 4640 critically ill patients. We investigated the effect of early vs late PN on any steroid treatment and on treatment for ≥ 5 days to capture patients with clinical suspicion of adrenal insufficiency, and assessed whether this was related to an effect on septic shock. Also, in a propensity score-matched subgroup (n=174) of patients not receiving steroids, plasma ACTH and (free) cortisol were quantified. RESULTS: Compared with late PN, more patients on early PN received treatment with corticosteroids (26.2% vs 23.8%; P = .05) and with corticosteroids for ≥ 5 days (14.0% vs 11.9%; P = .03). However, plasma ACTH and (free) cortisol concentrations were unaffected and thus could not explain the higher use of corticosteroids with early PN. Instead, more patients developed new septic shock with early PN (17.0%) than with late PN (14.2%) (P = .01). In multivariate logistic regression analysis, new septic shock was an independent determinant for ≥ 5 days steroid treatment (odds ratio, 6.25; 95% confidence interval, 4.93-7.94; P < .0001), statistically explaining the effect of early PN on steroid treatment. CONCLUSIONS: Early PN did not affect plasma concentrations of ACTH and (free) cortisol, but increased the incidence of septic shock, which statistically explained why more patients on early PN received corticosteroids.


Asunto(s)
Corticoesteroides/uso terapéutico , Enfermedad Crítica/epidemiología , Enfermedad Crítica/terapia , Sistema Hipotálamo-Hipofisario/fisiopatología , Nutrición Parenteral/estadística & datos numéricos , Sistema Hipófiso-Suprarrenal/fisiopatología , Insuficiencia Suprarrenal/epidemiología , Insuficiencia Suprarrenal/etiología , Hormona Adrenocorticotrópica/sangre , Anciano , Cuidados Críticos/métodos , Cuidados Críticos/estadística & datos numéricos , Femenino , Humanos , Hidrocortisona/sangre , Masculino , Análisis por Apareamiento , Persona de Mediana Edad , Nutrición Parenteral/efectos adversos , Factores de Riesgo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA