Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 41(15): 3462-3478, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33664133

RESUMEN

Clinical and experimental data from the last nine decades indicate that the preoptic area of the hypothalamus is a critical node in a brain network that controls sleep onset and homeostasis. By contrast, we recently reported that a group of glutamatergic neurons in the lateral and medial preoptic area increases wakefulness, challenging the long-standing notion in sleep neurobiology that the preoptic area is exclusively somnogenic. However, the precise role of these subcortical neurons in the control of behavioral state transitions and cortical dynamics remains unknown. Therefore, in this study, we used conditional expression of excitatory hM3Dq receptors in these preoptic glutamatergic (Vglut2+) neurons and show that their activation initiates wakefulness, decreases non-rapid eye movement (NREM) sleep, and causes a persistent suppression of rapid eye movement (REM) sleep. We also demonstrate, for the first time, that activation of these preoptic glutamatergic neurons causes a high degree of NREM sleep fragmentation, promotes state instability with frequent arousals from sleep, decreases body temperature, and shifts cortical dynamics (including oscillations, connectivity, and complexity) to a more wake-like state. We conclude that a subset of preoptic glutamatergic neurons can initiate, but not maintain, arousals from sleep, and their inactivation may be required for NREM stability and REM sleep generation. Further, these data provide novel empirical evidence supporting the hypothesis that the preoptic area causally contributes to the regulation of both sleep and wakefulness.SIGNIFICANCE STATEMENT Historically, the preoptic area of the hypothalamus has been considered a key site for sleep generation. However, emerging modeling and empirical data suggest that this region might play a dual role in sleep-wake control. We demonstrate that chemogenetic stimulation of preoptic glutamatergic neurons produces brief arousals that fragment sleep, persistently suppresses REM sleep, causes hypothermia, and shifts EEG patterns toward a "lighter" NREM sleep state. We propose that preoptic glutamatergic neurons can initiate, but not maintain, arousal from sleep and gate REM sleep generation, possibly to block REM-like intrusions during NREM-to-wake transitions. In contrast to the long-standing notion in sleep neurobiology that the preoptic area is exclusively somnogenic, we provide further evidence that preoptic neurons also generate wakefulness.


Asunto(s)
Ácido Glutámico/metabolismo , Hipotálamo/fisiología , Neuronas/fisiología , Sueño REM , Vigilia , Animales , Ondas Encefálicas , Hipotálamo/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
2.
Sleep Med Rev ; 52: 101307, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32259696

RESUMEN

The hypocretin system consists of two peptides hypocretin-1 and hypocretin-2 (HCRT1 and HCRT2). Hypocretin-containing neurons are located in the posterior and lateral hypothalamus, and have widespread projections throughout the brain and spinal cord. In addition to its presence in the cerebrospinal fluid (CSF), peripheral HCRT1 has been detected in plasma. Robust experimental evidence demonstrates functions of hypothalamic-originated HCRT1 in regulation of multiple biological systems related to sleep-wake states, energy homeostasis and endocrine function. In contrast, HCRT1 studies with human participants are limited by the necessarily invasive assessment of CSF HCRT1 to patients with underlying morbidity. Regulation by HCRT1 of energy homeostasis and reproduction in animals suggests similar regulation in humans and prompts these two systematic reviews. These reviews translate prior experimental findings from animal studies to humans and examine associations between HCRT1 and: 1) metabolic risk factors; 2) reproductive function in men, women and children. A total of 21 studies and six studies met the inclusion criteria for the two searches, respectively. Research question, study design, study population, assessments of HCRT1, reproductive, cardiometabolic data and main findings were extracted. Associations between HCRT1, metabolic and reproductive function are inconsistent. Limitations of studies and future research directions are outlined.


Asunto(s)
Homeostasis/fisiología , Hipotálamo , Salud Reproductiva , Animales , Factores de Riesgo Cardiometabólico , Humanos , Hipotálamo/metabolismo , Hipotálamo/fisiopatología , Neuronas , Orexinas/genética , Plasma/metabolismo , Sueño/fisiología
3.
Sleep ; 38(1): 73-84, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25325438

RESUMEN

STUDY OBJECTIVES: Dexmedetomidine is used clinically to induce states of sedation that have been described as homologous to nonrapid eye movement (NREM) sleep. A better understanding of the similarities and differences between NREM sleep and dexmedetomidine-induced sedation is essential for efforts to clarify the relationship between these two states. This study tested the hypothesis that dexmedetomidine-induced sedation is homologous to sleep. DESIGN: This study used between-groups and within-groups designs. SETTING: University of Michigan. PARTICIPANTS: Adult male Sprague Dawley rats (n = 40). INTERVENTIONS: Independent variables were administration of dexmedetomidine and saline or Ringer's solution (control). Dependent variables included time spent in states of wakefulness, sleep, and sedation, electroencephalographic (EEG) power, adenosine levels in the substantia innominata (SI), and activation of pCREB and c-Fos in sleep related forebrain regions. MEASUREMENTS AND RESULTS: Dexmedetomidine significantly decreased time spent in wakefulness (-49%), increased duration of sedation (1995%), increased EEG delta power (546%), and eliminated the rapid eye movement (REM) phase of sleep for 16 h. Sedation was followed by a rebound increase in NREM and REM sleep. Systemically administered dexmedetomidine significantly decreased (-39%) SI adenosine levels. Dialysis delivery of dexmedetomidine into SI did not decrease adenosine level. Systemic delivery of dexmedetomidine did not alter c-Fos or pCREB expression in the horizontal diagonal band, or ventrolateral, median, and medial preoptic areas of the hypothalamus. CONCLUSIONS: Dexmedetomidine significantly altered normal sleep phenotypes, and the dexmedetomidine-induced state did not compensate for sleep need. Thus, in the Sprague Dawley rat, dexmedetomidine-induced sedation is characterized by behavioral, electrographic, and immunohistochemical phenotypes that are distinctly different from similar measures obtained during sleep.


Asunto(s)
Dexmedetomidina/farmacología , Hipnóticos y Sedantes/farmacología , Fenotipo , Sueño/fisiología , Adenosina/metabolismo , Animales , Prosencéfalo Basal/efectos de los fármacos , Prosencéfalo Basal/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Dexmedetomidina/administración & dosificación , Diálisis , Electroencefalografía , Regulación de la Expresión Génica/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Masculino , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Sprague-Dawley , Sueño/efectos de los fármacos , Sueño REM/efectos de los fármacos , Sueño REM/fisiología , Sustancia Innominada/efectos de los fármacos , Sustancia Innominada/metabolismo , Factores de Tiempo , Vigilia/efectos de los fármacos , Vigilia/fisiología
4.
Rev. neurol. (Ed. impr.) ; 50(12): 747-758, jun. 2010. ilus
Artículo en Español | IBECS | ID: ibc-86690

RESUMEN

Introducción. Concebido en 1949 por las investigaciones de Moruzzi y Magoun, el concepto de sistema reticular activador ascendente (SRAA) fue de capital importancia para entender la fisiología de la vigilia y del sueño, así como para explicar las bases fisiopatológicas de enfermedades caracterizadas por insomnio, hipersomnia o coma. A sesenta años de este descubrimiento, los avances en el conocimiento de la anatomía, electrofisiología y neuroquímica de los circuitos implicados en la generación y el mantenimiento de la vigilia han determinado que el concepto original del SRAA fuera reevaluado. Sin embargo, a pesar de que patologías que afectan de una forma u otra el estado de vigilia son comunes en el manejo diario de distintas disciplinas médicas, los nuevos conceptos fisiológicos acerca de los sistemas activadores (generadores de vigilia) no son manejados por gran parte del cuerpo médico. Desarrollo. El presente trabajo es una breve actualización sobre los sistemas activadores, destacando los conceptos que pueden ser más rápidamente aplicados para entender la fisiopatología de la vigilia. Conclusiones. Los nuevos conceptos sobre los sistemas activadores son los siguientes: a) los sistemas activadores no sólo se encuentran en la formación reticulada del tronco encefálico, sino que incluyen regiones específicas del hipotálamo posterior y el cerebro basal anterior; b) los sistemas activadores están compuestos por distintos grupos neuronales que actúan mediante neurotransmisores o neuromoduladores específicos; y c) los sistemas activadores generan vigilia, modificando directamente la actividad talámica y cortical (AU)


Introduction. First conceived in 1949 by the research conducted by Moruzzi and Magoun, the concept of the ascending reticular activating system (ARAS) played a vital role in understanding the physiology of sleep and arousal, as well as in explaining the pathophysiological bases of diseases characterised by insomnia, hypersomnia or coma. Sixty years after this discovery, advances in our knowledge of the anatomy, electrophysiology and neurochemistry of the pathways involved in the generation and maintenance of arousal have made it necessary to reassess the original concept of ARAS. Nevertheless, in spite of the fact that the pathologies which, in some way or another, affect the state of arousal are common in the daily practice of different medical disciplines, the new physiological concepts in relation to the activating systems (generators of arousal) are not dealt with by a large number of medical practitioners. Development. This work is a brief update on the activating systems, with special attention given to the concepts that can be applied most readily in order to gain an understanding of the pathophysiology of arousal. Conclusions. The new concepts about the activating systems are as follows: a) the activating systems are not only to be found in the reticular formation of the brain stem, but also include specific regions of the posterior hypothalamus and the anterior basal brain; b) the activating systems are made up of different neuronal groups that act by means of specific neurotransmitters or neuromodulators; and c) the activating systems generate arousal by direct modification of thalamic and cortical activity (AU)


Asunto(s)
Humanos , Vigilia/fisiología , Trastornos del Sueño-Vigilia/fisiopatología , Tálamo/fisiología , Corteza Cerebral/fisiología , Acetilcolina/análisis , Dopamina/análisis , Formación Reticular/fisiología , Hipotálamo/fisiología , Histamina/análisis , Norepinefrina/análisis , Prosencéfalo/fisiología , Serotonina/análisis , Polisomnografía , Trastornos del Despertar del Sueño/fisiopatología , Locus Coeruleus/fisiología
5.
Rev. neurol. (Ed. impr.) ; 50(12): 747-758, jun. 2010. ilus
Artículo en Español | IBECS | ID: ibc-105380

RESUMEN

Introducción. Concebido en 1949 por las investigaciones de Moruzzi y Magoun, el concepto de sistema reticular activador ascendente (SRAA) fue de capital importancia para entender la fisiología de la vigilia y del sueño, así como para explicar las bases fisiopatológicas de enfermedades caracterizadas por insomnio, hipersomnia o coma. A sesenta años de este descubrimiento, los avances en el conocimiento de la anatomía, electrofisiología y neuroquímica de los circuitos implicados en la generación y el mantenimiento de la vigilia han determinado que el concepto original del SRAA fuera reevaluado. Sin embargo, a pesar de que patologías que afectan de una forma u otra el estado de vigilia son comunes en el manejo diario de distintas disciplinas médicas, los nuevos conceptos fisiológicos acerca de los sistemas activadores (generadores de vigilia) no son manejados por gran parte del cuerpo médico. Desarrollo. El presente trabajo es una breve actualización sobre los sistemas activadores, destacando los conceptos que pueden ser más rápidamente aplicados para entender la fisiopatología de la vigilia. Conclusiones. Los nuevos conceptos sobre los sistemas activadores son los siguientes: a) los sistemas activadores no sólo se encuentran en la formación reticulada del tronco encefálico, sino que incluyen regiones específicas del hipotálamo posterior y el cerebro basal anterior; b) los sistemas activadores están compuestos por distintos grupos neuronales que actúan mediante neurotransmisores o neuromoduladores específicos; y c) los sistemas activadores generan vigilia, modificando directamente la actividad talámica y cortical (AU)


Introduction. First conceived in 1949 by the research conducted by Moruzzi and Magoun, the concept of the ascending reticular activating system (ARAS) played a vital role in understanding the physiology of sleep and arousal, as well as in explaining the pathophysiological bases of diseases characterised by insomnia, hypersomnia or coma. Sixty years after this discovery, advances in our knowledge of the anatomy, electrophysiology and neurochemistry of the pathways involved in the generation and maintenance of arousal have made it necessary to reassess the original concept of ARAS. Nevertheless, in spite of the fact that the pathologies which, in some way or another, affect the state of arousal are common in the daily practice of different medical disciplines, the new physiological concepts in relation to the activating systems (generators of arousal) are not dealt with by a large number of medical practitioners. Development. This work is a brief update on the activating systems, with special attention given to the concepts that can be applied most readily in order to gain an understanding of the pathophysiology of arousal. Conclusions. The new concepts about the activating systems are as follows: a) the activating systems are not only to be found in the reticular formation of the brain stem, but also include specific regions of the posterior hypothalamus and the anterior basal brain; b) the activating systems are made up of different neuronal groups that act by means of specific neurotransmitters or neuromodulators; and c) the activating systems generate arousal by direct modification of thalamic and cortical activity (AU)


Asunto(s)
Humanos , Vigilia/fisiología , Trastornos del Sueño-Vigilia/fisiopatología , Tálamo/fisiología , Corteza Cerebral/fisiología , Acetilcolina/análisis , Dopamina/análisis , Formación Reticular/fisiología , Hipotálamo/fisiología , Histamina/análisis , Norepinefrina/análisis , Prosencéfalo/fisiología , Serotonina/análisis , Polisomnografía , Trastornos del Despertar del Sueño/fisiopatología , Locus Coeruleus/fisiología
6.
Anesthesiology ; 109(6): 978-88, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19034094

RESUMEN

BACKGROUND: Many general anesthetics are thought to produce a loss of wakefulness, in part, by enhancing gamma-aminobutyric acid (GABA) neurotransmission. However, GABAergic neurotransmission in the pontine reticular formation promotes wakefulness. This study tested the hypotheses that (1) relative to wakefulness, isoflurane decreases GABA levels in the pontine reticular formation; and (2) pontine reticular formation administration of drugs that increase or decrease GABA levels increases or decreases, respectively, isoflurane induction time. METHODS: To test hypothesis 1, cats (n = 5) received a craniotomy and permanent electrodes for recording the electroencephalogram and electromyogram. Dialysis samples were collected from the pontine reticular formation during isoflurane anesthesia and wakefulness. GABA levels were quantified using high-performance liquid chromatography. For hypothesis 2, rats (n = 10) were implanted with a guide cannula aimed for the pontine reticular formation. Each rat received microinjections of Ringer's (vehicle control), the GABA uptake inhibitor nipecotic acid, and the GABA synthesis inhibitor 3-mercaptopropionic acid. Rats were then anesthetized with isoflurane, and induction time was quantified as loss of righting reflex. Breathing rate was also measured. RESULTS: Relative to wakefulness, GABA levels were significantly decreased by isoflurane. Increased power in the electroencephalogram and decreased activity in the electromyogram caused by isoflurane covaried with pontine reticular formation GABA levels. Nipecotic acid and 3-mercaptopropionic acid significantly increased and decreased, respectively, isoflurane induction time. Nipecotic acid also increased breathing rate. CONCLUSION: Decreasing pontine reticular formation GABA levels comprises one mechanism by which isoflurane causes loss of consciousness, altered cortical excitability, muscular hypotonia, and decreased respiratory rate.


Asunto(s)
Anestesia/métodos , Pérdida de Tono Postural/fisiología , Isoflurano/farmacología , Respiración , Formación Reticular/fisiología , Ácido gamma-Aminobutírico/fisiología , Anestésicos por Inhalación/farmacología , Animales , Gatos , Pérdida de Tono Postural/efectos de los fármacos , Masculino , Puente/efectos de los fármacos , Puente/fisiología , Ratas , Ratas Sprague-Dawley , Respiración/efectos de los fármacos , Formación Reticular/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA