Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Mol Neurobiol ; 35(6): 899-911, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25805165

RESUMEN

Cystathionine-ß-synthase (CBS) deficiency is the main cause of homocystinuria. Homocysteine (Hcy), methionine, and other metabolites of Hcy accumulate in the body of affected patients. Despite the fact that thromboembolism represents the major cause of morbidity in CBS-deficient patients, the mechanisms of cardiovascular alterations found in homocystinuria remain unclear. In this work, we evaluated the lipid and inflammatory profile, oxidative protein damage, and the activities of the enzymes paraoxonase (PON1) and butyrylcholinesterase (BuChE) in plasma of CBS-deficient patients at diagnosis and during the treatment (protein-restricted diet supplemented with pyridoxine, folic acid, betaine, and vitamin B12). We also investigated the effect of folic acid and vitamin B12 on these parameters. We found a significant decrease in HDL cholesterol and apolipoprotein A1 (ApoA-1) levels, as well as in PON1 activity in both untreated and treated CBS-deficient patients when compared to controls. BuChE activity and IL-6 levels were significantly increased in not treated patients. Furthermore, significant positive correlations between PON1 activity and sulphydryl groups and between IL-6 levels and carbonyl content were verified. Moreover, vitamin B12 was positively correlated with PON1 and ApoA-1 levels, while folic acid was inversely correlated with total Hcy concentration, demonstrating the importance of this treatment. Our results also demonstrated that CBS-deficient patients presented important alterations in biochemical parameters, possibly caused by the metabolites of Hcy, as well as by oxidative stress, and that the adequate adherence to the treatment is essential to revert or prevent these alterations.


Asunto(s)
Arildialquilfosfatasa/sangre , Butirilcolinesterasa/sangre , Homocistinuria/sangre , Lípidos/sangre , Oxidantes/sangre , Adolescente , Adulto , Estudios de Casos y Controles , Niño , Preescolar , Cistationina betasintasa/deficiencia , Cistationina betasintasa/genética , Femenino , Ácido Fólico/sangre , Ácido Fólico/fisiología , Homocistinuria/genética , Humanos , Masculino , Estrés Oxidativo/fisiología , Vitamina B 12/sangre , Vitamina B 12/fisiología , Adulto Joven
2.
Int J Biochem Cell Biol ; 54: 20-5, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24980685

RESUMEN

The present study investigated the effects of hyperprolinemia on oxidative damage to biomolecules (protein, lipids and DNA) and the antioxidant status in blood of rats. The influence of the antioxidants on the effects elicited by proline was also examined. Wistar rats received two daily injections of proline and/or vitamin E plus C (6th-28th day of life) and were killed 12h after the last injection. Results showed that hyperprolinemia induced a significant oxidative damage to proteins, lipids and DNA demonstrated by increased carbonyl content, malondialdehyde levels and a greater damage index in comet assay, respectively. The concomitant antioxidants administration to proline treatment completely prevented oxidative damage to proteins, but partially prevented lipids and DNA damage. We also observed that the non-enzymatic antioxidant potential was decreased by proline treatment and partially prevented by antioxidant supplementation. The plasma levels of vitamins E and C significantly increased in rats treated exogenously with these vitamins but, interestingly, when proline was administered concomitantly with vitamin E plus C, the levels of these vitamins were similar to those found in plasma of control and proline rats. Our findings suggest that hyperprolinemia promotes oxidative damage to the three major classes of macromolecules in blood of rats. These effects were accomplished by decrease in non-enzymatic antioxidant potential and decrease in vitamins administered exogenously, which significantly decreased oxidative damage to biomolecules studied. These data suggest that antioxidants may be an effective adjuvant therapeutic to limit oxidative damage caused by proline.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/fisiopatología , Antioxidantes/farmacología , Daño del ADN/efectos de los fármacos , ADN/química , Lípidos/química , Estrés Oxidativo/efectos de los fármacos , Prolina Oxidasa/deficiencia , Proteínas/química , 1-Pirrolina-5-Carboxilato Deshidrogenasa/deficiencia , Animales , Ácido Ascórbico/farmacología , Suplementos Dietéticos , Masculino , Malondialdehído/metabolismo , Oxidación-Reducción , Prolina/química , Ratas , Ratas Wistar , Vitamina E/farmacología , Vitaminas/farmacología
3.
Gene ; 539(2): 270-4, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24534463

RESUMEN

High blood levels of homocysteine (Hcy) are found in patients affected by homocystinuria, a genetic disorder caused by deficiency of cystathionine ß-synthase (CBS) activity, as well as in nutritional deficiencies (vitamin B12 or folate) and in abnormal renal function. We previously demonstrated that lipid and protein oxidative damage is increased and the antioxidant defenses diminished in plasma of CBS-deficient patients, indicating that oxidative stress is involved in the pathophysiology of this disease. In the present work, we extended these investigations by evaluating DNA damage through the comet assay in peripheral leukocytes from CBS-deficient patients, as well as by analyzing of the in vitro effect of Hcy on DNA damage in white blood cells. We verified that DNA damage was significantly higher in the CBS-deficient patients under treatment based on a protein-restricted diet and pyridoxine, folic acid, betaine and vitamin B12 supplementation, when compared to controls. Furthermore, the in vitro study showed a concentration-dependent effect of Hcy inducing DNA damage. Taken together, the present data indicate that DNA damage occurs in treated CBS-deficient patients, possibly due to high Hcy levels.


Asunto(s)
Cistationina betasintasa/deficiencia , Cistationina betasintasa/genética , Daño del ADN , Homocisteína/sangre , Homocistinuria/genética , Adolescente , Adulto , Estudios de Casos y Controles , Niño , Ensayo Cometa , Cistationina betasintasa/sangre , Femenino , Estudios de Seguimiento , Homocistinuria/sangre , Homocistinuria/enzimología , Humanos , Masculino , Pronóstico , Adulto Joven
4.
Int J Dev Neurosci ; 31(1): 21-4, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23137711

RESUMEN

Maple syrup urine disease (MSUD) is an inborn error of metabolism biochemically characterized by elevated levels of the branched chain amino acids (BCAA) leucine, isoleucine, valine and the corresponding branched-chain α-keto acids. This disorder is clinically characterized by ketoacidosis, seizures, coma, psychomotor delay and mental retardation whose pathophysiology is not completely understood. Recent studies have shown that oxidative stress may be involved in neuropathology of MSUD. l-Carnitine (l-Car) plays a central role in the cellular energy metabolism because it transports long-chain fatty acids for oxidation and ATP generation. In recent years many studies have demonstrated the antioxidant role of this compound. In this work, we investigated the effect of BCAA-restricted diet supplemented or not with l-Car on lipid peroxidation and in protein oxidation in MSUD patients. We found a significant increase of malondialdehyde and of carbonyl content in plasma of MSUD patients under BCAA-restricted diet compared to controls. Furthermore, patients under BCAA-restricted diet plus l-Car supplementation presented a marked reduction of malondialdehyde content in relation to controls, reducing the lipid peroxidation. In addition, free l-Car concentrations were negatively correlated with malondialdehyde levels. Our data show that l-Car may have an antioxidant effect, protecting against the lipid peroxidation and this could represent an additional therapeutic approach to the patients affected by MSUD.


Asunto(s)
Carnitina/uso terapéutico , Metabolismo de los Lípidos/efectos de los fármacos , Enfermedad de la Orina de Jarabe de Arce/tratamiento farmacológico , Enfermedad de la Orina de Jarabe de Arce/metabolismo , Proteínas/metabolismo , Complejo Vitamínico B/uso terapéutico , Aminoácidos/metabolismo , Análisis de Varianza , Niño , Preescolar , Femenino , Humanos , Masculino , Malondialdehído/metabolismo , Carbonilación Proteica/efectos de los fármacos
5.
Mol Genet Metab ; 104(1-2): 112-7, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21742526

RESUMEN

Homocystinuria is an inherited disorder biochemically characterized by high urinary excretion of homocystine and increased levels of homocysteine (Hcy) and methionine in biological fluids. Affected patients usually have a variety of clinical and pathologic manifestations. Previous experimental data have shown a relationship between Hcy and oxidative stress, although very little was reported on this process in patients with homocystinuria. Therefore, in the present study we evaluated parameters of oxidative stress, namely carbonyl formation, malondialdehyde (MDA) levels, sulfhydryl content and total antioxidant status (TAS) in patients with homocystinuria at diagnosis and under treatment with a protein restricted diet supplemented by pyridoxine, folate, betaine, and vitamin B(12). We also correlated plasma Hcy and methionine concentrations with the oxidative stress parameters examined. We found a significant increase of MDA levels and carbonyl formation, as well as a reduction of sulfhydryl groups and TAS in plasma of homocystinuric patients at diagnosis relatively to healthy individuals (controls). We also verified that Hcy levels were negatively correlated with sulfhydryl content and positively with MDA levels. Furthermore, patients under treatment presented a significant reduction of the content of MDA, Hcy and methionine concentrations relatively to patients at diagnosis. Taken together, the present data indicate that lipid and protein oxidative damages are increased and the antioxidant defenses diminished in plasma of homocystinuric patients, probably due to increased reactive species elicited by Hcy. It is therefore presumed that oxidative stress participates at least in part in the pathogenesis of homocystinuria.


Asunto(s)
Homocisteína/sangre , Homocistinuria/sangre , Homocistinuria/patología , Estrés Oxidativo , Adolescente , Adulto , Antioxidantes/metabolismo , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Humanos , Masculino , Malondialdehído/sangre , Carbonilación Proteica , Compuestos de Sulfhidrilo/sangre , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA