Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Monit Assess ; 196(4): 336, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38430341

RESUMEN

River nutrient enrichment is a significant issue, and researchers worldwide are concerned about phosphorus. The physicochemical characteristics and phosphorus (P) fractions of 36 sediment and water samples from the Ganga (Kanpur, Prayagraj, Varanasi) and Yamuna (Mathura, Agra, Prayagraj) rivers were examined. Among the physicochemical parameters, pH exceeded the permissible limit in Ganga and Yamuna River water and sediment samples. Electrical conductivity (EC) and alkalinity were within the permissible limits, whereas total nitrogen (TN) exceeded the limit in Yamuna water. The analysis of phosphorus fractions indicated the dominance of inorganic phosphorus (IP) (76% in Ganga and 96% in Yamuna) over organic phosphorus in both rivers, suggesting the mineralization and microbial degradation as major processes responsible for transforming OP to IP. The positive correlation of pH with IP, AP (apatite phosphorus), and NAIP (non-apatite inorganic phosphorus) explains the release of inorganic phosphorus under alkaline conditions. The correlation between total organic carbon (TOC), TN, and organic phosphorus (OP) indicated the organic load in the rivers from allochthonous and autochthonous sources. Phosphorus released from river sediments and the concentration of phosphate in overlying river water show a positive correlation, suggesting that river sediments may serve as phosphorus reservoirs. The average phosphorus pollution index (PPI) was above one in both rivers, with relatively higher PPI values observed in the Yamuna River, indicating the contamination of sediment with phosphorus, indicating the contamination of sediment with phosphorus. This study revealed variations in the P fractionation of the sediment in both rivers, primarily as a result of contributions from different P sources. This information will be useful for applying different mitigation techniques to lower the phosphorus load in both river systems.


Asunto(s)
Ríos , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Agua/análisis , Fósforo/análisis , Disponibilidad Biológica , Contaminantes Químicos del Agua/análisis , Eutrofización , India , Sedimentos Geológicos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA