Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Br J Nutr ; 129(3): 416-427, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35383547

RESUMEN

Despite several efforts by the Government of India, the national burden of anaemia remains high and its growing prevalence (between 2015-2016 and 2019-2021) is concerning to India's public health system. This article reviews existing food-based and clinical strategies to mitigate the anaemia burden and why they are premature and insufficient. In a context where multiple anaemia control programmes are in play, this article proposes a threefold strategy for consideration. First, except the Comprehensive National Nutrition Survey, 2016-2018, which measured Hb concentration among children and adolescents aged 1-19 years using venous blood samples, all national surveys use capillary blood samples to determine Hb levels, which could be erroneous. The Indian government should prioritise conducting a nationwide survey for estimating the burden of anaemia and its clinical determinants for all age groups using venous blood samples. Second, without deciding the appropriate dose of Fe needed for an individual, food fortification programmes that are often compounded with layering of other micronutrients could be harmful and further research on this issue is needed. Same is true for the pharmacological intervention of Fe tablet or syrup supplementation programmes, which is given to individuals without assessing its need. In addition, there is a dire need for robust research to understand both the long-term benefit and side effects of Fe supplementation programmes. Third and final, the WHO is in process of reviewing the Hb threshold for defining anaemia, therefore the introduction of new anaemia control programmes should be restrained.


Asunto(s)
Anemia Ferropénica , Anemia , Niño , Adolescente , Humanos , Alimentos Fortificados , Anemia/epidemiología , Anemia/prevención & control , Micronutrientes/uso terapéutico , Estado Nutricional , India/epidemiología , Anemia Ferropénica/epidemiología , Anemia Ferropénica/prevención & control , Anemia Ferropénica/tratamiento farmacológico , Suplementos Dietéticos
2.
Physiol Mol Biol Plants ; 27(11): 2605-2619, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34916736

RESUMEN

LncRNAs (long noncoding RNAs) are 200 bp length crucial RNA molecules, lacking coding potential and having important roles in regulating gene expression, particularly in response to abiotic stresses. In this study, we identified salt stress-induced lncRNAs in chickpea roots and predicted their intricate regulatory roles. A total of 3452 novel lncRNAs were identified to be distributed across all 08 chickpea chromosomes. On comparing salt-tolerant (ICCV 10, JG 11) and salt-sensitive cultivars (DCP 92-3, Pusa 256), 4446 differentially expressed lncRNAs were detected under various salt  treatments. We predicted 3373 lncRNAs to be regulating their target genes in cis regulating manner and 80 unique lncRNAs were observed as interacting with 136 different miRNAs, as eTMs (endogenous target mimic) targets of miRNAs and implicated them in the regulatory network of salt stress response. Functional analysis of these lncRNA revealed their association in targeting salt stress response-related genes like potassium transporter, transporter family genes, serine/threonine-protein kinase, aquaporins like TIP1-2, PIP2-5 and transcription factors like, AP2, NAC, bZIP, ERF, MYB and WRKY. Furthermore, about 614 lncRNA-SSRs (simple sequence repeats) were identified as a new generation of molecular markers with higher efficiency and specificity in chickpea. Overall, these findings will pave the understanding of comprehensive functional role of potential lncRNAs, which can help in providing insight into the molecular mechanism of salt tolerance in chickpea. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01093-0.

3.
Microbiol Res ; 169(1): 40-8, 2014 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-24113511

RESUMEN

Six actinomycetes, CAI-13, CAI-85, CAI-93, CAI-140, CAI-155 and KAI-180, isolated from six different herbal vermi-composts were characterized for in vitro plant growth-promoting (PGP) properties and further evaluated in the field for PGP activity in rice. Of the six actinomycetes, CAI-13, CAI-85, CAI-93, CAI-140 and CAI-155 produced siderophores; CAI-13, CAI-93, CAI-155 and KAI-180 produced chitinase; CAI-13, CAI-140, CAI-155 and KAI-180 produced lipase; CAI-13, CAI-93, CAI-155 and KAI-180 produced protease; and CAI-13, CAI-85, CAI-140 and CAI-155 produced ß-1-3-glucanase whereas all the six actinomycetes produced cellulase, hydrocyanic acid and indole acetic acid (IAA). The actinomycetes were able to grow in NaCl concentrations of up to 8%, at pH values between 7 and 11, temperatures between 20 and 40 °C and compatible with fungicide bavistin at field application levels. In the rice field, the actinomycetes significantly enhanced tiller numbers, panicle numbers, filled grain numbers and weight, stover yield, grain yield, total dry matter, root length, volume and dry weight over the un-inoculated control. In the rhizosphere, the actinomycetes also significantly enhanced total nitrogen, available phosphorous, % organic carbon, microbial biomass carbon and nitrogen and dehydrogenase activity over the un-inoculated control. Sequences of 16S rDNA gene of the actinomycetes matched with different Streptomyces species in BLAST analysis. Of the six actinomycetes, CAI-85 and CAI-93 were found superior over other actinomycetes in terms of PGP properties, root development and crop productivity. qRT-PCR analysis on selected plant growth promoting genes of actinomycetes revealed the up-regulation of IAA genes only in CAI-85 and CAI-93.


Asunto(s)
Oryza/crecimiento & desarrollo , Oryza/microbiología , Desarrollo de la Planta/efectos de los fármacos , Microbiología del Suelo , Streptomyces/aislamiento & purificación , Streptomyces/fisiología , Biomasa , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Concentración de Iones de Hidrógeno , Reguladores del Crecimiento de las Plantas/metabolismo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Cloruro de Sodio/metabolismo , Streptomyces/crecimiento & desarrollo , Streptomyces/metabolismo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA