Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Technol Cancer Res Treat ; 22: 15330338231186388, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37461375

RESUMEN

Carbonaceous nanomaterials (CNMs) have drawn tremendous biomedical research interest because of their unique structural features. Recently, CNMs, namely carbon dots, fullerenes, graphene, etc, have been successful in establishing them as considerable nanotherapeutics for phototherapy applications due to their electrical, thermal, and surface properties. This review aims to crosstalk the current understanding of CNMs as multimodal compounds in photothermal and photodynamic therapies as an integrated approach to treating cancer. It also expounds on phototherapy's biomechanics and illustrates its relation to cancer biomodulation. Critical considerations related to the structural properties, fabrication approaches, surface functionalization strategies, and biosafety profiles of CNMs have been explained. This article provides an overview of the most recent developments in the study of CNMs used in phototherapy, emphasizing their usage as nanocarriers. To conquer the current challenges of CNMs, we can raise the standard of cancer therapy for patients. The review will be of interest to the researchers working in the area of photothermal and photodynamic therapies and aiming to explore CNMs and their conjugates in cancer therapy.


Asunto(s)
Nanoestructuras , Neoplasias , Fotoquimioterapia , Humanos , Fototerapia , Nanoestructuras/uso terapéutico , Nanoestructuras/química , Carbono/uso terapéutico , Carbono/química , Neoplasias/terapia
2.
Photochem Photobiol ; 99(4): 1157-1171, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36434772

RESUMEN

This investigation reports the quality-by-design (QbD) assisted novel templated approach for developing cancer cell-specific and laser-activatable nanoseeds (AuraTherm) for targeted photothermal ablation of triple-negative breast cancer (TNBC). AuraTherm was nanometric in size as characterized by SEM, TEM and particle analysis (80.28 ± 2.56 nm; -21.80 ± 0.17 mV) with hemocompatibility and neutrality towards blood components. AuraTherm showed reversible photothermal effect (ΔT: 37 ± 1.2°C → 49.4 ± 1.5°C; 15 min; 2.4 W cm-2 ) employing near-infrared 808 nm laser (NIR-808). The targeted cytosolic localization led to a significant anticancer activity as evaluated using apoptosis assay, cell cycle analysis, Intracellular ROS generation assay, cellular uptake and receptor binding assay. The NIR-808 laser-responsive photothermal ablation of cancer cell was found to be more effective compared to without NIR-808 laser-treated counterparts, suggesting the fundamental role of photothermal ablation in the treatment of TNBC.


Asunto(s)
Nanopartículas , Neoplasias de la Mama Triple Negativas , Humanos , Fototerapia , Neoplasias de la Mama Triple Negativas/terapia , Luz , Rayos Láser , Línea Celular Tumoral
3.
J Biomater Sci Polym Ed ; 33(15): 1901-1923, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35686513

RESUMEN

Acetylcholine imbalance in the human brain causes dementia-related symptoms of Alzheimer's disease. Acetylcholinesterase (AChE) inhibitors prevent the lysis of acetylcholine in the brain and prevent dementia. Therefore, the present study aims to investigate the in silico and in vitro AChE potential of rosemary oil and then formulate it into nanoemulsion as an adjuvant with co-administration of Donepezil (Dz) with a thought for futuristic target for Alzheimer's diseases via the intranasal route. The aim for preparing this formulation was to add the AChE inhibition effect of the rosemary oil to the effect that acts as an additive effect along with Dz. The docking score of rosemary oil components on human cholinesterase 1GQR protein was found to be >-5 kcal/mol. In vitro AChE activity of rosemary oil confirms the prominent IC50 of oil at 0.001 µL/min. Nanoemulsion was prepared by low energy emulsification technique using Tween 80 as surfactant and ethanol or diethylene glycol monoethyl ether as cosurfactant. Droplet size, polydisperity index, and zeta potential of stable nanoemulsion was ∼16 nm, 0.1, and -6.05 mV for stable batch. High-resolution transmission electron microscopy microscopic studies depicted the spherical shape of the droplet. Micro rheology investigation of nanoemulsion clearly attributes to gel-sol-gel behaviour of formulated nanoemulsion. Thermal evaluation of nanoemulsion depicts the phase transition behaviour of ethanol-based nanoemulsion at 60 °C. Ex vivo nasal ciliotoxicity and permeation studies of formulation establish the safety of ethanol-based rosemary oil-loaded nanoemulsion and permeation mechanism of Dz from the nanoemulsion. In vitro permeation studies showed more drug penetration from the nanoemulsion as compared to the plain drug. The prepared nanoemulsion was found to be stable for 3 months at 4, 25, and 45 °C of storage. This low energy preparation method can be advantageous for the preparation of scalable nanoemulsion and can be a futuristic therapeutic for Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Nanopartículas , Acetilcolina , Acetilcolinesterasa , Donepezilo , Emulsiones , Etanol , Humanos , Aceites Volátiles , Polisorbatos , Tensoactivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA