Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Circ Res ; 100(10): 1512-21, 2007 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-17446436

RESUMEN

Silent information regulator (Sir)2, a class III histone deacetylase, mediates lifespan extension in model organisms and prevents apoptosis in mammalian cells. However, beneficial functions of Sir2 remain to be shown in mammals in vivo at the organ level, such as in the heart. We addressed this issue by using transgenic mice with heart-specific overexpression of Sirt1, a mammalian homolog of Sir2. Sirt1 was significantly upregulated (4- to 8-fold) in response to pressure overload and oxidative stress in nontransgenic adult mouse hearts. Low (2.5-fold) to moderate (7.5-fold) overexpression of Sirt1 in transgenic mouse hearts attenuated age-dependent increases in cardiac hypertrophy, apoptosis/fibrosis, cardiac dysfunction, and expression of senescence markers. In contrast, a high level (12.5-fold) of Sirt1 increased apoptosis and hypertrophy and decreased cardiac function, thereby stimulating the development of cardiomyopathy. Moderate overexpression of Sirt1 protected the heart from oxidative stress induced by paraquat, with increased expression of antioxidants, such as catalase, through forkhead box O (FoxO)-dependent mechanisms, whereas high levels of Sirt1 increased oxidative stress in the heart at baseline. Thus, mild to moderate expression of Sirt1 retards aging of the heart, whereas a high dose of Sirt1 induces cardiomyopathy. Furthermore, although high levels of Sirt1 increase oxidative stress, moderate expression of Sirt1 induces resistance to oxidative stress and apoptosis. These results suggest that Sirt1 could retard aging and confer stress resistance to the heart in vivo, but these beneficial effects can be observed only at low to moderate doses (up to 7.5-fold) of Sirt1.


Asunto(s)
Envejecimiento , Miocardio/metabolismo , Estrés Oxidativo , Sirtuinas/fisiología , Adenosina Trifosfato/análisis , Animales , Apoptosis , Células Cultivadas , Ecocardiografía , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/fisiología , Ratones , Ratones Transgénicos , NAD/metabolismo , Ratas , Ratas Wistar , Sirtuina 1 , Sirtuinas/genética , Función Ventricular Izquierda
2.
Am J Physiol Heart Circ Physiol ; 286(6): H2237-42, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-14751856

RESUMEN

Glycolysis supplements energy synthesis at high cardiac workloads, producing not only ATP but also cytosolic NADH and pyruvate for oxidative ATP synthesis. Despite adequate Po(2), speculation exists that not all cytosolic NADH is oxidized by the mitochondria, leading to lactate production. In this study, we elucidate the mechanism for limited cytosolic NADH oxidation and increased lactate production at high workload despite adequate myocardial blood flow and oxygenation. Reducing equivalents from glycolysis enter mitochondria via exchange of mitochondrial alpha-ketoglutarate (alpha-KG) for cytosolic malate. This exchange was monitored at baseline and at high workloads by comparing (13)C enrichment between the products of alpha-KG oxidation (succinate) and alpha-KG efflux from mitochondria (glutamate). Under general anesthesia, a left thoracotomy was performed on 14 dogs and [2-(13)C]acetate was infused into the left anterior descending artery for 40 min. The rate-pressure product was 9,035 +/- 1,972 and 21,659 +/- 5,266 mmHg.beats.min(-1) (n = 7) at baseline (n = 7) and with dobutamine, respectively. (13)C enrichment of succinate was 57 +/- 10% at baseline and 45 +/- 13% at elevated workload (not significant), confirming oxidation of [2-(13)C]acetate. However, cytosolic glutamate enrichment, a marker of cytosolic NADH transfer to mitochondria, was dramatically reduced at high cardiac workload (11 +/- 1%) vs. baseline (50 +/- 14%, P < 0.05). This reduced exchange of (13)C from alpha-KG to cytosolic glutamate at high work indicates reduced shuttling of cytosolic reducing equivalents into the mitochondria. Myocardial tissue lactate increased 78%, countering this reduced oxidation of cytosolic NADH. The findings elucidate a contributing mechanism to glycolysis outpacing glucose oxidation in the absence of myocardial ischemia.


Asunto(s)
Metabolismo Energético/fisiología , Corazón/fisiología , Mitocondrias/metabolismo , Miocardio/metabolismo , NAD/metabolismo , Acetatos/farmacocinética , Animales , Isótopos de Carbono , Circulación Coronaria , Citosol/metabolismo , Perros , Femenino , Ácido Glutámico/metabolismo , Ácido Láctico/metabolismo , Espectroscopía de Resonancia Magnética , Masculino , Contracción Miocárdica/fisiología , Oxígeno/metabolismo , Ácido Succínico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA