Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Oecologia ; 178(3): 659-72, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25752617

RESUMEN

Photosynthesis/nutrient relationships of proximally growing forest and savanna trees were determined in an ecotonal region of Cameroon (Africa). Although area-based foliar N concentrations were typically lower for savanna trees, there was no difference in photosynthetic rates between the two vegetation formation types. Opposite to N, area-based P concentrations were-on average-slightly lower for forest trees; a dependency of photosynthetic characteristics on foliar P was only evident for savanna trees. Thus savanna trees use N more efficiently than their forest counterparts, but only in the presence of relatively high foliar P. Along with some other recent studies, these results suggest that both N and P are important modulators of woody tropical plant photosynthetic capacities, influencing photosynthetic metabolism in different ways that are also biome specific. Attempts to find simple unifying equations to describe woody tropical vegetation photosynthesis-nutrient relationships are likely to meet with failure, with ecophysiological distinctions between forest and savanna requiring acknowledgement.


Asunto(s)
Bosques , Pradera , Nitrógeno/metabolismo , Fósforo/metabolismo , Fotosíntesis , Árboles/metabolismo , África , Biodiversidad , Camerún , Ecosistema , Transporte de Electrón , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Ribulosa-Bifosfato Carboxilasa/metabolismo , Especificidad de la Especie , Árboles/fisiología , Clima Tropical
2.
Plant Cell Environ ; 33(6): 959-80, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20102540

RESUMEN

Photosynthetic leaf traits were determined for savanna and forest ecosystems in West Africa, spanning a large range in precipitation. Standardized major axis fits revealed important differences between our data and reported global relationships. Especially for sites in the drier areas, plants showed higher photosynthetic rates for a given N or P when compared with relationships from the global data set. The best multiple regression for the pooled data set estimated V(cmax) and J(max) from N(DW) and S. However, the best regression for different vegetation types varied, suggesting that the scaling of photosynthesis with leaf traits changed with vegetation types. A new model is presented representing independent constraints by N and P on photosynthesis, which can be evaluated with or without interactions with S. It assumes that limitation of photosynthesis will result from the least abundant nutrient, thereby being less sensitive to the allocation of the non-limiting nutrient to non-photosynthetic pools. The model predicts an optimum proportionality for N and P, which is distinct for V(cmax) and J(max) and inversely proportional to S. Initial tests showed the model to predict V(cmax) and J(max) successfully for other tropical forests characterized by a range of different foliar N and P concentrations.


Asunto(s)
Nitrógeno/metabolismo , Fósforo/metabolismo , Fotosíntesis/fisiología , Árboles/fisiología , África Occidental , Biomasa , Hojas de la Planta/metabolismo , Carácter Cuantitativo Heredable , Análisis de Regresión , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA