RESUMEN
Previously we demonstrated that a 12-week lasting self-guided positive imagery training had a positive effect on the psycho-emotional state of healthy subjects and was associated with an increase in functional connectivity in the brain. Here we repeated the previous project, but expanded the study, testing the hypothesis that training can also affect cognitive functions. Twenty subjects (half of them with subthreshold depression according CES-D) participated in the program of positive imagery training for 12 weeks. The schedule began with group training for 2 days, followed by training at home. Evaluations of cognitive functions and electroencephalographic (EEG) activity were conducted during three examinations as follows: E0-baseline (1 month before the training); E1-pre-training and E2-post-training. CNS Vital Signs battery was used to test the following cognitive domains: verbal and visual memory, executive functions, cognitive flexibility, social acuity, non-verbal reasoning. EEGs (19-channel) were recorded at rest with closed eyes and analyzed with Low-resolution electromagnetic tomography software. One-way repeated measures ANOVA, followed by pairwise comparison showed a significant increase after training (E2 vs. E1; E2 vs. E0) in the number of correct hits for positive emotions received during perception of emotions test (POET); after the sample was split according to the initial presence of depressive symptoms, the effect was present only in the subgroup with subthreshold depressive symptomatology. Post-training (E2 vs. E1; E2 vs. E0) the number of correct answers on non-verbal reasoning test increased; this effect was observed only in the subgroup that does have any depressive symptoms. Comparison of EEG post-training vs. pre-training demonstrated a significant reduction in current source density (CSD) after the training in the left hemisphere (insular cortex, frontal and temporal lobes in delta, theta and alpha1 bands). The observed changes were presented only in the subgroup with initial subthreshold depressive symptomatology. A negative correlation was found between POET and CSD in the left insular cortex for theta band. No significant differences were observed when data from EEG and cognitive tests obtained during pre-training were compared with baseline values. Potential use of training for the rehabilitation of various disturbances with cognitive and emotional deficits is discussed.
RESUMEN
The guided imagery training is considered as an effective method and therefore widely used in modern cognitive psychotherapy, while less is known about the effectiveness of self-guided. The present study investigated the effects of regular use of self-guided positive imagery, applying both subjective (assessment of the psycho-emotional state) and objective (electroencephalographic, EEG) approaches to research. Thirty healthy subjects participated in the cognitive imagery-training program for 12 weeks. The schedule began with group training with an instructor for 2 days, where the participants learned various techniques of positive imagery, after which they continued their individual training at home. Psychological and EEG evaluations were applied at the baseline and at the end of the training period. The impact of training on the psycho-emotional states of the participants was evaluated through: Center for epidemiologic studies- Depression (CES-D) 20 item scale, Satisfaction with life scale (SWLS) and General Self-Efficacy scale (GSE). EEGs (19-channels) were recorded at rest with eyes closed. EEG analysis was performed using Low resolution electromagnetic tomography (LORETA) software that allows the comparison of current source density (CSD) and functional connectivity (lagged phase and coherence) in the default mode network before and after a workout. Initial assessment with CES-D indicated that 22 participants had subthreshold depression. After the training participants had less prominent depressive symptoms (CES-D, p = 0.002), were more satisfied with their lives (SWLS, p = 0.036), and also evaluated themselves as more effective (GSE, p = 0.0002). LORETA source analysis revealed an increase in the CSD in the right mPFC (Brodmann area 10) for beta-2 band after training (p = 0.038). LORETA connectivity analysis demonstrated an increase in lagged coherence between temporal gyruses of both hemispheres in the delta band, as well as between the Posterior cingulate cortex and right BA21 in the theta band after a workout. Since mPFC is involved in emotional regulation, functional changes in this region can be seen in line with the results of psychological tests and their objective validation. A possible activation of GAMK-ergic system is discussed. Self-guided positive imagery (after instructions) can be helpful for emotional selfregulation in healthy subjects and has the potential to be useful in subthreshold depression.
RESUMEN
Motor imagery (MI) and action observation (AO) are considered effective cognitive tools for motor learning, but little work directly compared their cortical activation correlate in relation with subsequent performance. We compared AO and MI in promoting early learning of a complex four-limb, hand-foot coordination task, using electroencephalographic (EEG) and kinematic analysis. Thirty healthy subjects were randomly assigned into three groups to perform a training period in which AO watched a video of the task, MI had to imagine it, and Control (C) was involved in a distracting computation task. Subjects were then asked to actually perform the motor task with kinematic measurement of error time with respect to the correct motor performance. EEG was recorded during baseline, training and task execution, with task-related power (TRPow) calculation for sensorimotor (alpha and beta) rhythms reactive with respect to rest. During training, the AO group had a stronger alpha desynchronization than the MI and C over frontocentral and bilateral parietal areas. However, during task execution, AO group had greater beta synchronization over bilateral parietal regions than MI and C groups. This beta synchrony furthermore demonstrated the strongest association with kinematic errors, which was also significantly lower in AO than in MI. These data suggest that sensorimotor activation elicited by action observation enhanced motor learning according to motor performance, corresponding to a more efficient activation of cortical resources during task execution. Action observation may be more effective than motor imagery in promoting early learning of a new complex coordination task.
Asunto(s)
Electroencefalografía , Lóbulo Frontal/fisiología , Imágenes en Psicoterapia , Imaginación/fisiología , Movimiento/fisiología , Lóbulo Parietal/fisiología , Adulto , Ritmo alfa/fisiología , Ritmo beta/fisiología , Fenómenos Biomecánicos/fisiología , Función Ejecutiva/fisiología , Femenino , Pie/fisiología , Mano/fisiología , Humanos , Masculino , Actividad Motora/fisiología , Estimulación Luminosa/métodos , Desempeño Psicomotor/fisiología , Tiempo de Reacción/fisiología , Adulto JovenRESUMEN
BACKGROUND: Morphological and functional studies suggested involvement of several cortical and subcortical circuitries in patients with obsessive-compulsive disorder (OCD). The aim of the present study was to investigate networks involved in OCD pathophysiology, using power (coupling of EEG bands, low-resolution electromagnetic tomography-LORETA) and coherence analysis in drug-naïve patients. METHOD: EEG was obtained from 37 drug-naïve patients with OCD and 37 age- and sex-matched controls. Resting EEG was recorded from 29 scalp channels. Coupling (ratio and correlation) between low and high frequencies was analyzed on Fz. For each frequency band, LORETA current density distribution, intra-hemispheric and inter-hemispheric coherence analysis were computed. RESULTS: OCD had increased current density for delta in the insula and for beta in frontal, parietal and limbic lobes. OCD also had decreased inter-hemispheric coherence and reduced coupling between delta and beta frequencies. CONCLUSIONS: In OCD, increased frontal beta is consistent with previous evidence of frontal dysfunction. Hyperactivity of insular delta sources, together with rhythms decoupling and reduced interhemispheric alpha coherence are consistent with additional involvement of cortico-subcortical functional connections. Combined use of power and coherence analysis may provide functional measures on different levels of involvement of cortico-subcortical circuits in neuropsychiatric disorders.