Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Physiol Gastrointest Liver Physiol ; 324(1): G24-G37, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36410023

RESUMEN

Single immunoglobulin interleukin-1-related receptor (SIGIRR), toll-interacting protein (TOLLIP), and A20 are major inhibitors of toll-like receptor (TLR) signaling induced postnatally in the neonatal intestine. Short-chain fatty acids (SCFAs), fermentation products of indigestible carbohydrates produced by symbiotic bacteria, inhibit intestinal inflammation. Herein, we investigated the mechanisms by which SCFAs regulate SIGIRR, A20, and TOLLIP expression and mitigate experimental necrotizing enterocolitis (NEC). Butyrate induced NOTCH activation by repressing sirtuin 1 (SIRT1)-mediated deacetylation of the Notch intracellular domain (NICD) in human intestinal epithelial cells (HIECs). Overexpression of NICD induced SIGIRR, A20, and TOLLIP expression. Chromatin immunoprecipitation revealed that butyrate-induced NICD binds to the SIGIRR, A20, and TOLLIP gene promoters. Notch1-shRNA suppressed butyrate-induced SIGIRR/A20 upregulation in mouse enteroids and HIEC. Flagellin (TLR5 agonist)-induced inflammation in HIEC was inhibited by butyrate in a SIGIRR-dependent manner. Neonatal mice fed butyrate had increased NICD, A20, SIGIRR, and TOLLIP expression in the ileal epithelium. Butyrate inhibited experimental NEC-induced intestinal apoptosis, cytokine expression, and histological injury. Our data suggest that SCFAs can regulate the expression of the major negative regulators of TLR signaling in the neonatal intestine through Notch1 and ameliorate experimental NEC. Enteral SCFAs supplementation in preterm infants provides a promising bacteria-free, therapeutic option for NEC.NEW & NOTEWORTHY Short-chain fatty acids (SCFAs), such as propionate and butyrate, metabolites produced by symbiotic gut bacteria are known to be anti-inflammatory, but the mechanisms by which they protect against NEC are not fully understood. In this study, we reveal that SCFAs regulate intestinal inflammation by inducing the key TLR and IL1R inhibitors, SIGIRR and A20, through activation of the pluripotent transcriptional factor NOTCH1. Butyrate-mediated SIGIRR and A20 induction represses experimental NEC in the neonatal intestine.


Asunto(s)
Enterocolitis Necrotizante , Recién Nacido , Animales , Ratones , Humanos , Enterocolitis Necrotizante/tratamiento farmacológico , Enterocolitis Necrotizante/prevención & control , Enterocolitis Necrotizante/genética , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Recien Nacido Prematuro , Inflamación/metabolismo , Mucosa Intestinal/metabolismo , Ácidos Grasos Volátiles/farmacología , Ácidos Grasos Volátiles/metabolismo , Butiratos/metabolismo , Inmunoglobulinas/metabolismo , Interleucina-1/metabolismo , Receptor Notch1/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
2.
Toxicol Mech Methods ; 29(8): 561-568, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31161845

RESUMEN

Cleistanthus collinus is a poisonous shrub used for deliberate self-harm in rural areas of South India and intake of boiled decoction of leaves is a common method of self-harm. Distal renal tubular acidosis (dRTA) is an important clinical symptom observed in C. collinus poisoning, and renal V-ATPases may be potential targets of damage. However, a lack of understanding of molecular mediators involved hampers medical management, which is mainly supportive. We hypothesized that C. collinus poisoning induces renal oxidative stress; probably by inducing mitochondrial uncoupling, which compromises V-ATPase activity to ultimately produce dRTA. This was tested by exposing renal BBMV, kidney cells in culture, and Wistar rats to C. collinus poisoning. Exposure to C. collinus aqueous extract resulted in significant elevations in the lipid peroxidation marker, conjugated dienes, in cell culture and in vivo. A significant decrease in mitochondrial respiratory control ratio was observed in kidneys from C. collinus-treated animals suggesting that mitochondrial oxidative phosphorylation is uncoupled. This was accompanied by significant increase in ADP levels and a decrease in proton pump activity. Thus, these results demonstrate that C. collinus poisoning induces oxidative stress which influences proton pump activity, probably due to feedback inhibition by elevated ADP levels because of mitochondrial dysfunction in the rat kidney.


Asunto(s)
Acidosis Tubular Renal/inducido químicamente , Euphorbiaceae/envenenamiento , Riñón/efectos de los fármacos , Mitocondrias Musculares/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , ATPasas de Translocación de Protón Vacuolares/metabolismo , Acidosis Tubular Renal/metabolismo , Animales , Femenino , Células HEK293 , Humanos , Riñón/metabolismo , Riñón/patología , Masculino , Mitocondrias Musculares/metabolismo , Fosforilación Oxidativa , Extractos Vegetales/envenenamiento , Ratas Wistar
3.
J Gastroenterol Hepatol ; 30(12): 1740-7, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26095579

RESUMEN

BACKGROUND AND AIM: Glutamine is an important energy source for the intestinal epithelium, and its supplementation protects intestinal epithelial cells by induction of glutathione. However, mechanisms of glutathione induction in cells at various stages of differentiation along the crypt to villus axis are not well understood. This study examined induction of glutathione in response to glutamine along the intestinal villus-crypt axis and evaluated regulatory mediators involved in the process. METHODS: Animals were administered 4% glutamine in feed for 7 days, following which enterocytes at various stages of differentiation were isolated and glutathione levels and signaling mediators involved in its regulation were studied. RESULTS: In control animals, glutathione levels were higher in the intestinal crypt than in the villus or middle region. This was accompanied by elevated expression of the modifier subunit of glutathione synthetase (GCLM) and the transcription factor Nrf2 when compared with cells from the villus and middle regions. These levels were further enhanced by glutamine throughout the intestine, although the effects were more dramatic in the crypt. In parallel to glutathione induction, glutamine supplementation also altered actin dynamics and proliferation in cells of the crypt. CONCLUSIONS: These results suggest that the variation of glutathione levels along the villus-crypt axis in the intestine is due to gradients in expression of mediators such as glutamate cysteine ligase modifier subunit and Nrf2. The protective effects of glutamine supplementation seem to be most pronounced in the crypt, where it upregulates proliferation, glutathione levels and alters actin dynamics.


Asunto(s)
Glutamina , Glutatión , Mucosa Intestinal , Animales , Femenino , Masculino , Citoesqueleto de Actina/metabolismo , Administración Oral , Diferenciación Celular , Separación Celular , Enterocitos/metabolismo , Células Epiteliales/metabolismo , Glutamato-Cisteína Ligasa/metabolismo , Glutamina/administración & dosificación , Glutamina/farmacología , Glutatión/metabolismo , Glutatión Sintasa/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/citología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch , Ratas Wistar , Factor 2 Relacionado con NF-E2/metabolismo
4.
Am J Physiol Gastrointest Liver Physiol ; 285(1): G177-84, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12637250

RESUMEN

Butyrate enemas have been demonstrated to ameliorate inflammation in ulcerative colitis. The mechanism of this protective effect of butyrate is not known, and this study examines the effect of butyrate on epithelial function, inducible heat shock protein 70 (HSP70) expression, and NF-kappaB activation in experimental colitis. Colitis was induced in rats by oral dextran sulfate sodium (DSS) and by butyrate or saline enemas. Mucosal barrier function was assessed by electrical resistance and [14C]mannitol permeability. HSP70 production was determined by [35S]methionine labeling, Western blot analysis, and immunohistochemistry. Activation of heat shock factors (HSFs) and NF-kappaB was evaluated by EMSA. Butyrate showed a significant protection against the decrease in cell viability, increase in mucosal permeability, and polymorphonuclear neutrophil infiltration seen in DSS colitis. Butyrate inhibited HSP70 expression in DSS colitis and also inhibited the activation of HSF and NF-kappaB. Thus butyrate enema was found to be cytoprotective in DSS colitis, an effect partly mediated by suppressing activation of HSP70 and NF-kappaB.


Asunto(s)
Butiratos/farmacología , Colitis/tratamiento farmacológico , Proteínas HSP70 de Choque Térmico/metabolismo , Mucosa Intestinal/metabolismo , FN-kappa B/metabolismo , Animales , Anticoagulantes , Transporte Biológico/efectos de los fármacos , Transporte Biológico/fisiología , Radioisótopos de Carbono , Supervivencia Celular , Colitis/inducido químicamente , Colitis/patología , Sulfato de Dextran , Modelos Animales de Enfermedad , Diuréticos Osmóticos/farmacocinética , Ensayo de Cambio de Movilidad Electroforética , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/fisiología , Enterocitos/patología , Mucosa Intestinal/patología , Manitol/farmacocinética , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA