Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Metab ; 22(4): 646-57, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26278050

RESUMEN

Feeding behavior is exquisitely regulated by homeostatic and hedonic neural substrates that integrate energy demand as well as the reinforcing and rewarding aspects of food. Understanding the net contribution of homeostatic and reward-driven feeding has become critical because of the ubiquitous source of energy-dense foods and the consequent obesity epidemic. Hypothalamic agouti-related peptide-secreting neurons (AgRP neurons) provide the primary orexigenic drive of homeostatic feeding. Using models of neuronal inhibition or ablation, we demonstrate that the feeding response to a fast ghrelin or serotonin receptor agonist relies on AgRP neurons. However, when palatable food is provided, AgRP neurons are dispensable for an appropriate feeding response. In addition, AgRP-ablated mice present exacerbated stress-induced anorexia and palatable food intake--a hallmark of comfort feeding. These results suggest that, when AgRP neuron activity is impaired, neural circuits sensitive to emotion and stress are engaged and modulated by food palatability and dopamine signaling.


Asunto(s)
Proteína Relacionada con Agouti/genética , Neuronas/metabolismo , Proteína Relacionada con Agouti/deficiencia , Animales , Dopamina/metabolismo , Ingestión de Alimentos , Hipotálamo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/citología , Transducción de Señal
2.
Proc Natl Acad Sci U S A ; 110(4): 1512-7, 2013 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-23297228

RESUMEN

To maintain homeostasis, hypothalamic neurons in the arcuate nucleus must dynamically sense and integrate a multitude of peripheral signals. Blood-borne molecules must therefore be able to circumvent the tightly sealed vasculature of the blood-brain barrier to rapidly access their target neurons. However, how information encoded by circulating appetite-modifying hormones is conveyed to central hypothalamic neurons remains largely unexplored. Using in vivo multiphoton microscopy together with fluorescently labeled ligands, we demonstrate that circulating ghrelin, a versatile regulator of energy expenditure and feeding behavior, rapidly binds neurons in the vicinity of fenestrated capillaries, and that the number of labeled cell bodies varies with feeding status. Thus, by virtue of its vascular connections, the hypothalamus is able to directly sense peripheral signals, modifying energy status accordingly.


Asunto(s)
Regulación del Apetito/fisiología , Ghrelina/sangre , Hipotálamo/fisiología , Animales , Barrera Hematoencefálica/fisiología , Permeabilidad Capilar , Ingestión de Alimentos/fisiología , Ayuno/fisiología , Hipotálamo/irrigación sanguínea , Hipotálamo/citología , Masculino , Eminencia Media/irrigación sanguínea , Eminencia Media/citología , Eminencia Media/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía de Fluorescencia por Excitación Multifotónica , Modelos Neurológicos , Neuronas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA