Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Nutr ; 153(6): 1718-1729, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37277162

RESUMEN

BACKGROUND: Muscle mass and strength decrease during short periods of immobilization and slowly recover during remobilization. Recent artificial intelligence applications have identified peptides that appear to possess anabolic properties in in vitro assays and murine models. OBJECTIVES: This study aimed to compare the impact of Vicia faba peptide network compared with milk protein supplementation on muscle mass and strength loss during limb immobilization and regain during remobilization. METHODS: Thirty young (24 ± 5 y) men were subjected to 7 d of one-legged knee immobilization followed by 14 d of ambulant recovery. Participants were randomly allocated to ingest either 10 g of the Vicia faba peptide network (NPN_1; n = 15) or an isonitrogenous control (milk protein concentrate; MPC; n = 15) twice daily throughout the study. Single-slice computed tomography scans were performed to assess quadriceps cross-sectional area (CSA). Deuterium oxide ingestion and muscle biopsy sampling were applied to measure myofibrillar protein synthesis rates. RESULTS: Leg immobilization decreased quadriceps CSA (primary outcome) from 81.9 ± 10.6 to 76.5 ± 9.2 cm2 and from 74.8 ± 10.6 to 71.5 ± 9.8 cm2 in the NPN_1 and MPC groups, respectively (P < 0.001). Remobilization partially recovered quadriceps CSA (77.3 ± 9.3 and 72.6 ± 10.0 cm2, respectively; P = 0.009), with no differences between the groups (P > 0.05). During immobilization, myofibrillar protein synthesis rates (secondary outcome) were lower in the immobilized leg (1.07% ± 0.24% and 1.10% ± 0.24%/d, respectively) than in the non-immobilized leg (1.55% ± 0.27% and 1.52% ± 0.20%/d, respectively; P < 0.001), with no differences between the groups (P > 0.05). During remobilization, myofibrillar protein synthesis rates in the immobilized leg were greater with NPN_1 than those with MPC (1.53% ± 0.38% vs. 1.23% ± 0.36%/d, respectively; P = 0.027). CONCLUSION: NPN_1 supplementation does not differ from milk protein in modulating the loss of muscle size during short-term immobilization and the regain during remobilization in young men. NPN_1 supplementation does not differ from milk protein supplementation in modulating the myofibrillar protein synthesis rates during immobilization but further increases myofibrillar protein synthesis rates during remobilization.


Asunto(s)
Vicia faba , Masculino , Humanos , Animales , Ratones , Vicia faba/metabolismo , Proteínas Musculares/metabolismo , Atrofia Muscular/metabolismo , Proteínas de la Leche/farmacología , Proteínas de la Leche/metabolismo , Inteligencia Artificial , Fuerza Muscular , Inmovilización/métodos , Músculo Cuádriceps/metabolismo , Músculo Cuádriceps/patología , Suplementos Dietéticos , Péptidos/metabolismo , Músculo Esquelético/metabolismo
2.
Int J Sport Nutr Exerc Metab ; 33(5): 247-254, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37348850

RESUMEN

Dietary protein digestion and amino acid absorption rates are modulated by numerous factors such as the food matrix. It has been speculated that protein ingested in liquid form is more rapidly digested and absorbed when compared with ingestion in solid form. Here, we assessed the postprandial plasma amino acid availability following ingestion of a single bolus of protein provided in either liquid or solid form. Twelve healthy, young females were included in this randomized cross-over study. On two separate test days, participants ingested 20-g milk protein concentrate in solid form (protein bar) or in liquid form (protein drink). Products were composed of matched ingredients and, thereby, had the same macro- and micronutrient composition. On both test days, arterialized blood samples were collected at regular time intervals for up to 4 hr following protein ingestion to assess the postprandial rise in plasma amino acid concentrations. Protein ingestion robustly elevated circulating plasma amino acid concentrations (p < .001), with no significant differences between treatments (p = .088). The incremental area under the curve of the postprandial rise in total plasma amino acid concentrations did not differ following bar versus drink consumption (160 ± 73 vs. 160 ± 71 mmol·L-1·240 min-1, respectively; 95% confidence interval [-37, 37]; Cohen's dz = 0.003; p = .992). Ingestion of protein in liquid or solid form does not modulate postprandial amino acid availability in healthy, female adults. Any differences in protein digestion and amino acid absorption due to differences in food matrix are not attributed to the protein being consumed as a bar or as a drink.


Asunto(s)
Proteínas de la Leche , Proteínas Musculares , Humanos , Adulto , Femenino , Proteínas Musculares/metabolismo , Aminoácidos , Proteínas en la Dieta , Ingestión de Alimentos , Periodo Posprandial/fisiología
3.
Med Sci Sports Exerc ; 55(4): 614-624, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36534950

RESUMEN

PURPOSE: This study aimed to assess the effects of 20 wk resistance exercise training with or without protein supplementation on body composition, muscle mass, muscle strength, physical performance, and aerobic capacity in prostate cancer patients receiving androgen deprivation therapy (ADT). METHODS: Sixty prostate cancer patients receiving ADT were randomly assigned to perform 20 wk of resistance exercise training with supplementation of 31 g whey protein (EX + PRO, n = 30) or placebo (EX + PLA, n = 30), consumed immediately after exercise and every night before sleep. A separate control group (CON, n = 36) only received usual care. At baseline and after 20 wk, body composition (dual-energy x-ray absorptiometry), muscle mass (computed tomography scan), muscle strength (1-repetition maximum strength tests), physical performance (Timed Up and Go Test, 30-Second Chair Stand Test, and Stair Climb Test), aerobic capacity (cardiopulmonary exercise test), and habitual dietary intake (food diary) were assessed. Data were analyzed using a two-factor repeated-measures ANOVA. RESULTS: Over time, muscle mass and strength increased in EX + PRO and EX + PLA and decreased in CON. Total fat mass and fat percentage increased in EX + PRO and CON, but not in EX + PLA. Physical performance did not significantly change over time in either group. Aerobic capacity was maintained in EX + PLA, but it decreased in EX + PRO and CON. Habitual protein intake (without supplements) averaged >1.0 g·kg body weight -1 ·d -1 , with no differences over time or between groups. CONCLUSIONS: In prostate cancer patients, resistance exercise training counteracts the adverse effects of ADT on body composition, muscle mass, muscle strength, and aerobic capacity, with no additional benefits of protein supplementation.


Asunto(s)
Neoplasias de la Próstata , Entrenamiento de Fuerza , Masculino , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/inducido químicamente , Antagonistas de Andrógenos/efectos adversos , Andrógenos/farmacología , Andrógenos/uso terapéutico , Equilibrio Postural , Estudios de Tiempo y Movimiento , Suplementos Dietéticos , Fuerza Muscular/fisiología , Composición Corporal , Músculos , Poliésteres/farmacología , Terapia por Ejercicio
4.
Curr Opin Clin Nutr Metab Care ; 24(6): 504-510, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34596062

RESUMEN

PURPOSE OF REVIEW: This review summarizes recent studies that assessed whether nutritional supplementation enhances the efficacy of exercise training in older adults, focusing on the benefits for physical/functional performance of protein, vitamin D, or multi-ingredient supplementation. RECENT FINDINGS: Studies applying long-term exercise training strongly support the benefits of different exercise regimens for muscle strength and function but most studies do not provide direct evidence for protein, vitamin D, or multi-ingredient supplementation to further augment such improvements in older adults. Several methodological limitations are addressed that likely limited the reliability to convincingly establish or refute any additive effects of supplementation. Only when specifically tailored to the population under study, ensuring proper intensity, duration, and adherence to exercise, and aiming for a daily intake of ∼1.5 g protein per kg body mass, and ∼800 IU of vitamin D supplementation, there appears to be some potential to augment the efficacy of long-term exercise training in older adults, with potentially greater benefits in compromised older subpopulations. SUMMARY: There is some support for the efficacy of nutritional supplementation to further augment the beneficial effects of prolonged exercise training in older adults but any intervention needs tailoring of both the exercise and the nutritional intervention towards the intended (sub)population.


Asunto(s)
Entrenamiento de Fuerza , Anciano , Suplementos Dietéticos , Ejercicio Físico , Humanos , Fuerza Muscular , Músculo Esquelético , Ensayos Clínicos Controlados Aleatorios como Asunto , Reproducibilidad de los Resultados
5.
Am J Clin Nutr ; 114(6): 2074-2083, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34510176

RESUMEN

BACKGROUND: Patients with end-stage renal disease (ESRD) undergoing hemodialysis experience a rapid decline in skeletal muscle mass and strength. Hemodialysis removes amino acids (AAs) from the circulation, thereby lowering plasma AA concentrations and stimulating proteolysis. OBJECTIVES: In the present study, we evaluate the impact of intradialytic protein ingestion at rest and following exercise on AA removal and plasma AA availability in patients with ESRD. METHODS: Ten patients (age: 65 ± 16 y, male/female: 8/2, BMI: 24.2 ± 4.8 kg/m2, serum albumin: 3.4 ± 0.3 g/dL) with ESRD undergoing hemodialysis participated in this randomized controlled crossover trial. During 4 hemodialysis sessions, patients were assigned to ingest 40 g protein or a placebo 60 min after initiation, both at rest (PRO and PLA, respectively) and following exercise (PRO + EX and PLA + EX, respectively). Spent dialysate and blood samples were collected every 30 min throughout hemodialysis to assess AA removal and plasma AA availability. RESULTS: Plasma AA concentrations declined by 26.1 ± 4.5% within 30 min after hemodialysis initiation during all interventions (P < 0.001, η2p > 0.79). Protein ingestion, but not intradialytic exercise, increased AA removal throughout hemodialysis (9.8 ± 2.0, 10.2 ± 1.6, 16.7 ± 2.2, and 17.3 ± 2.3 g during PLA, PLA + EX, PRO, and PRO + EX interventions, respectively; protein effect P < 0.001, η2p = 0.97; exercise effect P = 0.32, η2p = 0.11). Protein ingestion increased plasma AA concentrations until the end of hemodialysis, whereas placebo ingestion resulted in decreased plasma AA concentrations (time effect P < 0.001, η2p > 0.84). Plasma AA availability (incremental AUC) was greater during PRO and PRO + EX interventions (49 ± 87 and 70 ± 34 mmol/L/240 min, respectively) compared with PLA and PLA + EX interventions (-227 ± 54 and -208 ± 68 mmol/L/240 min, respectively; protein effect P < 0.001, η2p = 0.98; exercise effect P = 0.21, η2p = 0.16). CONCLUSIONS: Protein ingestion during hemodialysis compensates for AA removal and increases plasma AA availability both at rest and during recovery from intradialytic exercise. Intradialytic exercise does not compromise AA removal or reduce plasma AA availability during hemodialysis in a postabsorptive or postprandial state.


Asunto(s)
Aminoácidos , Fallo Renal Crónico , Anciano , Anciano de 80 o más Años , Estudios Cruzados , Ingestión de Alimentos , Femenino , Humanos , Fallo Renal Crónico/terapia , Masculino , Persona de Mediana Edad , Poliésteres , Proteínas , Diálisis Renal
6.
Int J Sport Nutr Exerc Metab ; 31(5): 385-396, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34284348

RESUMEN

Previous studies have used supplements to increase dietary nitrate intake in clinical populations. Little is known about whether effects can also be induced through vegetable consumption. Therefore, the aim of this study was to assess the impact of dietary nitrate, through nitrate-rich vegetables (NRV) and beetroot juice (BRJ) supplementation, on plasma nitrate and nitrite concentrations, exercise tolerance, muscle oxygenation, and cardiovascular function in patients with peripheral arterial disease. In a randomized crossover design, 18 patients with peripheral arterial disease (age: 73 ± 8 years) followed a nitrate intake protocol (∼6.5 mmol) through the consumption of NRV, BRJ, and nitrate-depleted BRJ (placebo). Blood samples were taken, blood pressure and arterial stiffness were measured in fasted state and 150 min after intervention. Each intervention was followed by a maximal walking exercise test to determine claudication onset time and peak walking time. Gastrocnemius oxygenation was measured by near-infrared spectroscopy. Blood samples were taken and blood pressure was measured 10 min after exercise. Mean plasma nitrate and nitrite concentrations increased (nitrate; Time × Intervention interaction; p < .001), with the highest concentrations after BRJ (494 ± 110 µmol/L) compared with NRV (202 ± 89 µmol/L) and placebo (80 ± 19 µmol/L; p < .001). Mean claudication onset time and peak walking time did not differ between NRV (413 ± 187 s and 745 ± 220 s, respectively), BRJ (392 ± 154 s and 746 ± 176 s), and placebo (403 ± 176 s and 696 ± 222 s) (p = .762 and p = .165, respectively). Gastrocnemius oxygenation, blood pressure, and arterial stiffness were not affected by the intervention. NRV and BRJ intake markedly increase plasma nitrate and nitrite, but this does not translate to improved exercise tolerance, muscle oxygenation, and/or cardiovascular function.


Asunto(s)
Beta vulgaris , Enfermedad Arterial Periférica , Anciano , Anciano de 80 o más Años , Presión Sanguínea , Estudios Cruzados , Suplementos Dietéticos , Método Doble Ciego , Tolerancia al Ejercicio , Jugos de Frutas y Vegetales , Humanos , Músculo Esquelético , Nitratos
7.
J Nutr ; 151(9): 2667-2679, 2021 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-34236392

RESUMEN

BACKGROUND: Emerging evidence suggests that increasing dietary nitrate intake may be an effective approach to improve cardiovascular health. However, the effects of a prolonged elevation of nitrate intake through an increase in vegetable consumption are understudied. OBJECTIVE: Our primary aim was to determine the impact of 12 wk of increased daily consumption of nitrate-rich vegetables or nitrate supplementation on blood pressure (BP) in (pre)hypertensive middle-aged and older adults. METHODS: In a 12-wk randomized, controlled study (Nijmegen, The Netherlands), 77 (pre)hypertensive participants (BP: 144 ± 13/87 ± 7 mmHg, age: 65 ± 10 y) either received an intervention with personalized monitoring and feedback aiming to consume ∼250-300 g nitrate-rich vegetables/d (∼350-400 mg nitrate/d; n = 25), beetroot juice supplementation (400 mg nitrate/d; n = 26), or no intervention (control; n = 26). Before and after intervention, 24-h ambulatory BP was measured. Data were analyzed using repeated measures ANOVA (time × treatment), followed by within-group (paired t-test) and between-group analyses (1-factor ANOVA) where appropriate. RESULTS: The 24-h systolic BP (SBP) (primary outcome) changed significantly (P-interaction time × treatment = 0.017) with an increase in the control group (131 ± 8 compared with 135 ± 10 mmHg; P = 0.036); a strong tendency for a decline in the nitrate-rich vegetable group (129 ± 10 compared with 126 ± 9 mmHg; P = 0.051) which was different from control (P = 0.020); but no change in the beetroot juice group (133 ± 11 compared with 132 ± 12 mmHg; P = 0.56). A significant time × treatment interaction was also found for daytime SBP (secondary outcome, P = 0.011), with a significant decline in the nitrate-rich vegetable group (134 ± 10 compared with 129 ± 9 mmHg; P = 0.006) which was different from control (P = 0.010); but no changes in the beetroot juice (138 ± 12 compared with 137 ± 14 mmHg; P = 0.41) and control group (136 ± 10 compared with 137 ± 11 mmHg; P = 0.08). Diastolic BP (secondary outcome) did not change in any of the groups. CONCLUSIONS: A prolonged dietary intervention focusing on high-nitrate vegetable intake is an effective strategy to lower SBP in (pre)hypertensive middle-aged and older adults. This trial was registered at www.trialregister.nl as NL7814.


Asunto(s)
Beta vulgaris , Hipertensión , Anciano , Presión Sanguínea , Monitoreo Ambulatorio de la Presión Arterial , Suplementos Dietéticos , Humanos , Hipertensión/prevención & control , Persona de Mediana Edad , Nitratos , Nitritos , Verduras
8.
Eur J Sport Sci ; 21(6): 871-878, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32594854

RESUMEN

Purpose: Dietary nitrate has been shown to enhance muscle contractile function and has, therefore, been linked to increased muscle power and sprint exercise performance. However, the impact of dietary nitrate supplementation on maximal strength, performance and muscular endurance remains to be established. Methods: Fifteen recreationally active males (25 ± 4 y, BMI 24 ± 3 kg/m2) participated in a randomized double-blinded cross-over study comprising two 6-d supplementation periods; 140 mL/d nitrate-rich (BR; 985 mg/d) and nitrate-depleted (PLA; 0.37 mg/d) beetroot juice. Three hours following the last supplement, we assessed countermovement jump (CMJ) performance, maximal strength and power of the upper leg by voluntary isometric (30° and 60° angle) and isokinetic contractions (60, 120, 180 and 300°·s-1), and muscular endurance (total workload) by 30 reciprocal isokinetic voluntary contractions at 180°·s-1. Results: Despite differences in plasma nitrate (BR: 879 ± 239 vs. PLA: 33 ± 13 µmol/L, P < 0.001) and nitrite (BR: 463 ± 217 vs. PLA: 176 ± 50 nmol/L, P < 0.001) concentrations prior to exercise testing, CMJ height (BR: 39.3 ± 6.3 vs. PLA: 39.6 ± 6.3 cm; P = 0.39) and muscular endurance (BR: 3.93 ± 0.69 vs. PLA: 3.90 ± 0.66 kJ; P = 0.74) were not different between treatments. In line, isometric strength (P > 0.50 for both angles) and isokinetic knee extension power (P > 0.33 for all velocities) did not differ between treatments. Isokinetic knee flexion power was significantly higher following BR compared with PLA ingestion at 60°·s-1 (P = 0.001), but not at 120°·s-1 (P = 0.24), 180°·s-1 (P = 0.066), and 300°·s-1 (P = 0.36). Conclusion: Nitrate supplementation does not improve maximal strength, countermovement jump performance and muscular endurance in healthy, active males.


Asunto(s)
Beta vulgaris , Suplementos Dietéticos , Jugos de Frutas y Vegetales , Movimiento/fisiología , Fuerza Muscular/fisiología , Músculo Esquelético/fisiología , Adulto , Estudios Cruzados , Método Doble Ciego , Humanos , Contracción Isométrica/fisiología , Masculino , Nitratos/administración & dosificación , Nitratos/sangre , Nitritos/sangre , Resistencia Física/fisiología , Rendimiento Físico Funcional , Extremidad Superior/fisiología
9.
Nutrients ; 12(8)2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32751788

RESUMEN

Micellar casein is characterized as a slowly digestible protein source, and its structure can be modulated by various food processing techniques to modify its functional properties. However, little is known about the impact of such modifications on casein protein digestion and amino acid absorption kinetics and the subsequent post-prandial plasma amino acid responses. In the present study, we determined post-prandial aminoacidemia following ingestion of isonitrogenous amounts of casein protein (40 g) provided as micellar casein (Mi-CAS), calcium caseinate (Ca-CAS), or cross-linked sodium caseinate (XL-CAS). Fifteen healthy, young men (age: 26 ± 4 years, BMI: 23 ± 1 kg·m-2) participated in this randomized cross-over study and ingested 40 g Mi-Cas, Ca-CAS, and XL-CAS protein, with a ~1 week washout between treatments. On each trial day, arterialized blood samples were collected at regular intervals during a 6 h post-prandial period to assess plasma amino acid concentrations using ultra-performance liquid chromatography. Plasma amino acid concentrations were higher following the ingestion of XL-CAS when compared to Mi-CAS and Ca-CAS from t = 15 to 90 min (all p < 0.05). Plasma amino acid concentrations were higher following ingestion of Mi-CAS compared to Ca-CAS from t = 30 to 45 min (both p < 0.05). Plasma total amino acids iAUC were higher following the ingestion of XL-CAS when compared to Ca-CAS (294 ± 63 vs. 260 ± 75 mmol·L-1, p = 0.006), with intermediate values following Mi-CAS ingestion (270 ± 63 mmol·L-1, p > 0.05). In conclusion, cross-linked sodium caseinate is more rapidly digested when compared to micellar casein and calcium caseinate. Protein processing can strongly modulate the post-prandial rise in plasma amino acid bioavailability in vivo in humans.


Asunto(s)
Aminoácidos/sangre , Caseínas/farmacocinética , Proteínas en la Dieta/farmacocinética , Periodo Posprandial/efectos de los fármacos , Adulto , Área Bajo la Curva , Cromatografía Líquida de Alta Presión , Estudios Cruzados , Digestión/efectos de los fármacos , Ingestión de Alimentos , Absorción Gastrointestinal/efectos de los fármacos , Voluntarios Sanos , Humanos , Masculino , Adulto Joven
10.
Nutr Clin Pract ; 35(4): 655-663, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32578906

RESUMEN

BACKGROUND: Malnutrition is prevalent in hospitalized patients. To support muscle maintenance in older and chronically ill patients, a protein intake of 1.2-1.5 g/kg/d has been recommended during hospitalization. We assessed daily protein intake levels and distribution in older patients at risk for malnutrition during hospitalization. METHODS: In this prospective, observational study, we measured actual food and food supplement consumption in patients (n = 102; age, 68 ± 14 years; hospital stay, 14 [8-28] days) at risk of malnutrition during hospitalization. Food provided by hospital meals, ONS, and snacks and the actual amount of food (not) consumed were weighed and recorded for all patients. RESULTS: Hospital meals provided 1.03 [0.77-1.26] protein, whereas actual protein consumption was only 0.65 [0.37-0.93] g/kg/d. Protein intake at breakfast, lunch, and dinner was 10 [6-15], 9 [5-14], and 13 [9-18] g, respectively. The use of ONS (n = 62) resulted in greater energy (1.26 [0.40-1.79] MJ/d, 300 [100-430] kcal/d) and protein intake levels (11 [4-16] g/d), without changing the macronutrient composition of the diet. CONCLUSION: Despite protein provision of ∼1.0 g/kg/d, protein intake remains well below these values (∼0.65 g/kg/d), as 30%-40% of the provided food and supplements is not consumed. Provision of ONS may increase energy and protein intake but does not change the macronutrient composition of the diet. Current nutrition strategies to achieve the recommended daily protein intake in older patients during their hospitalization are not as effective as generally assumed.


Asunto(s)
Dieta/estadística & datos numéricos , Proteínas en la Dieta/análisis , Suplementos Dietéticos/análisis , Hospitalización/estadística & datos numéricos , Desnutrición/etiología , Anciano , Anciano de 80 o más Años , Peso Corporal , Ingestión de Alimentos/fisiología , Conducta Alimentaria/fisiología , Femenino , Evaluación Geriátrica , Humanos , Masculino , Comidas , Persona de Mediana Edad , Encuestas Nutricionales , Estado Nutricional , Estudios Prospectivos , Ingesta Diaria Recomendada , Bocadillos
11.
J Acad Nutr Diet ; 120(8): 1305-1317, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32386891

RESUMEN

BACKGROUND: Emerging evidence suggests that increasing dietary nitrate intake may be an effective approach to reduce blood pressure. Beetroot juice is often used to supplement dietary nitrate, whereas nitrate intake levels from habitual diet are low. An increase in the habitual intake of nitrate-rich vegetables may represent an alternative to nitrate supplementation. However, the effectiveness and acceptability of a nitrate-rich-vegetables diet remain to be established. OBJECTIVE: The aim was to investigate the effect and feasibility of two different intervention strategies to increase dietary nitrate intake, on plasma nitrate/nitrite concentrations and blood pressure. DESIGN: A randomized, crossover trial was used. PARTICIPANTS: Participants were healthy men and women (both n=15; age: 24±6 years) from the Netherlands. INTERVENTION: Participants were instructed to consume ∼400 mg nitrate at lunch, provided through nitrate-rich vegetables and dietary counseling, or beetroot juice supplementation. Both interventions lasted 1 week, with 1-week washout (January to April 2017). MAIN OUTCOME: Plasma nitrate and nitrite concentrations and resting systolic and diastolic blood pressure were measured in an overnight fasted state (before and after intervention) and ∼2.5 hours after lunch (before and throughout intervention on day 1, 4, and 7). STATISTICAL ANALYSIS: Two-factor (time × treatment) repeated-measures analyses of variance were performed. RESULTS: Mean plasma nitrate concentrations increased with both interventions, with a larger increase in beetroot juice vs nitrate-rich vegetables, both in a fasted state and ∼2.5 hours after lunch (day 1, beetroot juice: 2.31±0.56 mg/dL [373±90 µmol/L] vs nitrate-rich vegetables: 1.71±0.83 mg/dL [277±134 µmol/L]; P<0.001). Likewise, mean plasma nitrite concentrations increased with both interventions, but were higher after lunch in beetroot juice than in nitrate-rich vegetables (day 1: 2.58±1.52 µg/dL [560±331 nmol/L] vs 2.15±1.21 µg/dL [468±263 nmol/L]; P=0.020). Fasting mean systolic and diastolic blood pressure did not change, but mean systolic and diastolic blood pressure assessed ∼2.5 hours after lunch were significantly reduced throughout both intervention periods (P<0.05), with no differences between beetroot juice and nitrate-rich vegetables (day 1, systolic blood pressure: -5.1±9.5 mm Hg and diastolic blood pressure: -5.3±8.9 mm Hg). CONCLUSION: Short-term consumption of dietary nitrate in the form of nitrate-rich vegetables represents an effective means to increase plasma nitrate and nitrite concentrations, and reduces blood pressure to the same extent as beetroot juice supplementation.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Nitratos/administración & dosificación , Nitratos/sangre , Nitritos/sangre , Verduras/química , Adolescente , Adulto , Beta vulgaris , Bebidas , Estudios Cruzados , Dieta , Femenino , Humanos , Masculino , Nitrosaminas/orina , Raíces de Plantas , Adulto Joven
12.
Free Radic Biol Med ; 152: 295-300, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32224084

RESUMEN

Extensive research performed over the past 10 years has resulted in dietary nitrate being considered a nutritional supplement that can improve exercise performance. However, there is still limited insight in the metabolic fate of dietary nitrate following the appearance of nitrate and nitrite in the circulation. Recent observations in humans suggest the storage of nitrate in skeletal muscle tissue. This short review discusses the possibility of nitrate being stored and utilized in human skeletal muscle tissue, and why confirming this may increase our understanding of how the nitrate-nitrite-NO pathway improves exercise performance. Further insight in skeletal muscle nitrate storage and metabolism may provide answers to current gaps in knowledge, such as the ergogenic benefit of acute vs multiday dietary nitrate supplementation, as well as the suggested muscle fiber-type specific effects on exercise performance. In this mini-review, specific questions that need further exploration are also discussed.


Asunto(s)
Beta vulgaris , Sustancias para Mejorar el Rendimiento , Suplementos Dietéticos , Método Doble Ciego , Ejercicio Físico , Humanos , Músculo Esquelético , Nitratos , Nitritos
13.
BMC Geriatr ; 19(1): 151, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31138136

RESUMEN

OBJECTIVE: Vitamin D deficiency is common among older adults and has been linked to muscle weakness. Vitamin D supplementation has been proposed as a strategy to improve muscle function in older adults. The aim of this study was to investigate the effect of calcifediol (25-hydroxycholecalciferol) on whole genome gene expression in skeletal muscle of vitamin D deficient frail older adults. METHODS: A double-blind placebo-controlled trial was conducted in vitamin D deficient frail older adults (aged above 65), characterized by blood 25-hydroxycholecalciferol concentrations between 20 and 50 nmol/L. Subjects were randomized across the placebo group and the calcifediol group (10 µg per day). Muscle biopsies were obtained before and after 6 months of calcifediol (n = 10) or placebo (n = 12) supplementation and subjected to whole genome gene expression profiling using Affymetrix HuGene 2.1ST arrays. RESULTS: Expression of the vitamin D receptor gene was virtually undetectable in human skeletal muscle biopsies, with Ct values exceeding 30. Blood 25-hydroxycholecalciferol levels were significantly higher after calcifediol supplementation (87.3 ± 20.6 nmol/L) than after placebo (43.8 ± 14.1 nmol/L). No significant difference between treatment groups was observed on strength outcomes. The whole transcriptome effects of calcifediol and placebo were very weak, as indicated by the fact that correcting for multiple testing using false discovery rate did not yield any differentially expressed genes using any reasonable cut-offs (all q-values ~ 1). P-values were uniformly distributed across all genes, suggesting that low p-values are likely to be false positives. Partial least squares-discriminant analysis and principle component analysis was unable to separate treatment groups. CONCLUSION: Calcifediol supplementation did not significantly affect the skeletal muscle transcriptome in frail older adults. Our findings indicate that vitamin D supplementation has no effects on skeletal muscle gene expression, suggesting that skeletal muscle may not be a direct target of vitamin D in older adults. TRIAL REGISTRATION: This study was registered at clinicaltrials.gov as NCT02349282 on January 28, 2015.


Asunto(s)
Suplementos Dietéticos , Anciano Frágil , Músculo Esquelético/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Deficiencia de Vitamina D/tratamiento farmacológico , Vitamina D/análogos & derivados , Anciano , Método Doble Ciego , Femenino , Humanos , Masculino , Músculo Esquelético/fisiología , Transcriptoma/fisiología , Resultado del Tratamiento , Vitamina D/administración & dosificación , Deficiencia de Vitamina D/sangre
14.
Nutr Rev ; 77(4): 254-266, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30624706

RESUMEN

Older people with hip fractures are often malnourished at the time of fracture, which can have substantial influence on mortality and clinical outcomes, as well as functional outcome and quality of life. A close relationship between protein intake and muscle maintenance has been demonstrated. Skeletal muscle weakness is an independent risk factor for falls and fall-related injuries in the elderly and is an independent marker of prognosis. However, the effect of perioperative nutritional interventions on outcomes in elderly hip-fracture patients remains controversial. In this narrative review, an overview is presented of the existing literature on nutritional status and sarcopenia in elderly hip-fracture patients, clinical outcomes, and the effects of nutritional intervention on outcome and rehabilitation in this patient group.


Asunto(s)
Suplementos Dietéticos , Fracturas de Cadera/cirugía , Sarcopenia/dietoterapia , Anciano , Anciano de 80 o más Años , Servicios de Salud para Ancianos , Fracturas de Cadera/complicaciones , Humanos , Estado Nutricional , Periodo Perioperatorio , Sarcopenia/complicaciones
15.
Physiol Rep ; 7(2): e13982, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30653856

RESUMEN

This study investigated the effects of acute and chronic beetroot juice (BRJ) supplementation on submaximal exercise oxygen uptake (VO2 ), time trial (TT) performance, and contractile properties of the plantar flexors in females. Study 1: Using a double blind, randomized, crossover design, 12 recreationally active females using hormonal contraceptives supplemented acutely (2.5 h) and chronically (8 days) with 280 mL BRJ/d (~26 mmoles nitrate [ NO3- ]) or a NO3- -free placebo (PLA). On days 1 and 8, participants cycled for 10 min at 50% and 70% VO2peak and completed a 4 kJ/kg body mass TT. Plasma [ NO3- ] and nitrite ([NO2- ]) increased significantly following BRJ supplementation versus PLA. There was no effect of BRJ supplementation on VO2 at 50% or 70% VO2peak , or TT performance. Study 2: 12 recreationally active females (n = 7 from Study 1) using hormonal contraceptives participated in a baseline visit and were supplemented acutely (2.5 h) and chronically (8 days) with 280 mL BRJ/d. Maximum voluntary strength (MVC) of the plantar flexors was assessed and a torque-frequency curve performed. BRJ had no effect on MVC, voluntary activation, peak twitch torque, time to peak torque, or half relaxation time. Following both acute (46.6 ± 4.9% of 100 Hz torque) and chronic (47.2 ± 4.4%) supplementation, 10 Hz torque was significantly greater compared to baseline (32.9 ± 2.6%). In summary, BRJ may not be an effective ergogenic aid in recreationally active females as it did not reduce submaximal exercise VO2 or improve aerobic TT performance despite increasing low frequency torque production.


Asunto(s)
Antioxidantes/farmacología , Rendimiento Atlético/fisiología , Beta vulgaris/química , Ejercicio Físico/fisiología , Jugos de Frutas y Vegetales , Músculo Esquelético/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Adulto , Estudios Cruzados , Suplementos Dietéticos , Método Doble Ciego , Femenino , Humanos , Adulto Joven
16.
Med Sci Sports Exerc ; 51(3): 436-444, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30299412

RESUMEN

PURPOSE: Strenuous exercise induces intestinal injury, which is likely related to splanchnic hypoperfusion and may be associated with gastrointestinal complaints commonly reported during certain exercise modalities. Increasing circulating nitric oxide (NO) levels or inducing postprandial hyperemia may improve splanchnic perfusion, thereby attenuating intestinal injury during exercise. Therefore, we investigated the effects of both dietary nitrate ingestion and sucrose ingestion on splanchnic perfusion and intestinal injury induced by prolonged strenuous cycling. METHODS: In a randomized crossover manner, 16 well-trained male athletes (age, 28 ± 7 yr; Wmax, 5.0 ± 0.3 W·kg) cycled 60 min at 70% Wmax after acute ingestion of sodium nitrate (NIT; 800 mg NO3), sucrose (SUC; 40 g), or a water placebo (PLA). Splanchnic perfusion was assessed by determining the gap between gastric and arterial pCO2 (gapg-apCO2) using gastric air tonometry. Plasma intestinal fatty acid-binding protein (I-FABP) concentrations, reflecting enterocyte damage, were assessed every 20 min during and up to 60 min of postexercise recovery. RESULTS: The exercise protocol resulted in splanchnic hypoperfusion, as gapg-apCO2 levels increased during exercise (P < 0.001), with no differences between treatments (P = 0.47). Although plasma I-FABP concentrations increased during exercise and postexercise recovery for all treatments (P < 0.0001), the increase was different between treatments (P < 0.0001). Post hoc comparisons showed an attenuated increase in I-FABP in SUC versus PLA (P = 0.020). In accordance, I-FABP area under the curve (AUC0-120) was significantly lower in SUC versus PLA (57,270 ± 77,425 vs 114,907 ± 91,527 pg·mL per 120 min, P = 0.002). No differences were observed between NIT and PLA (P = 0.99). CONCLUSION: Sucrose but not nitrate ingestion lowers intestinal injury evoked during prolonged strenuous cycling. These results suggest that sucrose ingestion, but not nitrate, prevents hypoperfusion-induced gastrointestinal damage during exercise and, as such, may help to lower exercise-related gastrointestinal complaints.


Asunto(s)
Ciclismo/lesiones , Intestinos/lesiones , Nitratos/administración & dosificación , Circulación Esplácnica , Sacarosa/administración & dosificación , Adulto , Atletas , Dióxido de Carbono/sangre , Estudios Cruzados , Suplementos Dietéticos , Ingestión de Alimentos , Proteínas de Unión a Ácidos Grasos/sangre , Humanos , Masculino , Óxido Nítrico/sangre , Adulto Joven
17.
J Nutr ; 148(11): 1723-1732, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30247714

RESUMEN

Background: The proposed benefits of protein supplementation on the skeletal muscle adaptive response to resistance exercise training in older adults remain unclear. Objective: The present study assessed whether protein supplementation after exercise and before sleep augments muscle mass and strength gains during resistance exercise training in older individuals. Methods: Forty-one older men [mean ± SEM age: 70 ± 1 y; body mass index (kg/m2): 25.3 ± 0.4] completed 12 wk of whole-body resistance exercise training (3 sessions/wk) and were randomly assigned to ingest either protein (21 g protein, 3 g total leucine, 9 g carbohydrate, 3 g fat; n = 21) or an energy-matched placebo (0 g protein, 25 g carbohydrate, 6 g fat; n = 20) after exercise and each night before sleep. Maximal strength was assessed by 1-repetition-maximum (1RM) strength testing, and muscle hypertrophy was assessed at the whole-body (dual-energy X-ray absorptiometry), upper leg (computed tomography scan), and muscle fiber (biopsy) levels. Muscle protein synthesis rates were assessed during week 12 of training with the use of deuterated water (2H2O) administration. Results: Leg-extension 1RM increased in both groups (placebo: 88 ± 3 to 104 ± 4 kg; protein: 85 ± 3 to 102 ± 4 kg; P < 0.001), with no differences between groups. Quadriceps cross-sectional area (placebo: 67.8 ± 1.7 to 73.5 ± 2.0 cm2; protein: 68.4 ± 1.4 to 72.3 ± 1.4 cm2; P < 0.001) increased in both groups, with no differences between groups. Muscle fiber hypertrophy occurred in type II muscle fibers (placebo: 5486 ± 418 to 6492 ± 429 µm2; protein: 5367 ± 301 to 6259 ± 391 µm2; P < 0.001), with no differences between groups. Muscle protein synthesis rates were 1.62% ± 0.06% and 1.57% ± 0.05%/d in the placebo and protein groups, respectively, with no differences between groups. Conclusion: Protein supplementation after exercise and before sleep does not further augment skeletal muscle mass or strength gains during resistance exercise training in active older men. This study was registered at the Netherlands Trial Registry (www.trialregister.nl) as NTR5082.


Asunto(s)
Proteínas en la Dieta/administración & dosificación , Suplementos Dietéticos , Ejercicio Físico/fisiología , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Sueño/fisiología , Anciano , Aminoácidos , Cromo , Esquema de Medicación , Humanos , Masculino , Ácidos Nicotínicos
18.
J Nutr ; 148(5): 712-720, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30053278

RESUMEN

Background: Vitamin D supplementation is proposed as a potential treatment strategy to counteract functional decline in older adults. However, data from randomized trials are either limited or inconsistent. Objective: This study investigated the effect of daily supplementation with 25-hydroxycholecalciferol [25(OH)D3] or cholecalciferol (vitamin D3) on muscle strength and physical performance in older adults. Methods: This was a randomized, double-blind, placebo-controlled trial of 6 mo including 78 prefrail or frail (according to the Fried criteria), community-dwelling older adults (n = 43 men) aged ≥65 y, with a baseline 25-hydroxyvitamin D [25(OH)D] concentration between 20 and 50 nmol/L. Participants were supplemented daily with 10 µg 25(OH)D3, 20 µg vitamin D3, or a placebo capsule. Serum 25(OH)D was measured by liquid chromatography-tandem mass spectrometry. The primary outcome was maximal isometric knee-extension strength (Biodex System 4); secondary outcomes included knee-flexion and hand grip strength, Short-Physical Performance Battery score, Timed Up and Go score, postural sway, muscle mass (dual-energy X-ray absorptiometry), and muscle fiber type and size. Results: The mean baseline serum 25(OH)D concentration was 37.7 nmol/L (95% CI: 35.4, 39.9 nmol/L). After 6 mo of supplementation, concentrations increased to 98.7 nmol/L (95% CI: 93.1, 104.4 nmol/L) in the 25(OH)D3 group and to 72.0 nmol/L (95% CI: 66.1, 77.8 nmol/L) in the vitamin D3 group, compared with 47.5 nmol/L (95% CI: 41.8, 53.3 nmol/L) in the placebo group (P-interaction < 0.01). Knee-extension strength did not significantly change in the 25(OH)D3 group (5.9 Nm; 95% CI: -6.2, 18.0 Nm), in the vitamin D3 group (5.5 Nm; 95% CI: -6.8, 17.8 Nm), or in the placebo group (1.8 Nm; 95% CI: -10.7, 14.4 Nm) (P-interaction = 0.74). Furthermore, mean changes in physical performance tests, muscle mass, and muscle fiber type and size did not differ between the groups. Conclusion: Increasing the serum 25(OH)D concentration over a period of 6 mo did not significantly change muscle strength and physical performance in prefrail and frail older adults. This trial was registered at www.clinicaltrials.gov as NCT02349282.


Asunto(s)
Calcifediol/farmacología , Colecalciferol/farmacología , Anciano Frágil , Fragilidad/tratamiento farmacológico , Músculo Esquelético/efectos de los fármacos , Anciano , Anciano de 80 o más Años , Calcifediol/administración & dosificación , Colecalciferol/administración & dosificación , Suplementos Dietéticos , Método Doble Ciego , Femenino , Humanos , Masculino , Músculo Esquelético/fisiología
19.
Nutrients ; 10(5)2018 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-29772844

RESUMEN

BACKGROUND: Short successive periods of physical inactivity occur throughout life and contribute considerably to the age-related loss of skeletal muscle mass. The maintenance of muscle mass during brief periods of disuse is required to prevent functional decline and maintain metabolic health. OBJECTIVE: To assess whether daily leucine supplementation during a short period of disuse can attenuate subsequent muscle loss in vivo in humans. METHODS: Thirty healthy (22 ± 1 y) young males were exposed to a 7-day unilateral knee immobilization intervention by means of a full leg cast with (LEU, n = 15) or without (CON, n = 15) daily leucine supplementation (2.5 g leucine, three times daily). Prior to and directly after immobilization, quadriceps muscle cross-sectional area (computed tomography (CT) scan) and leg strength (one-repetition maximum (1-RM)) were assessed. Furthermore, muscle biopsies were taken in both groups before and after immobilization to assess changes in type I and type II muscle fiber CSA. RESULTS: Quadriceps muscle cross-sectional area (CSA) declined in the CON and LEU groups (p < 0.01), with no differences between the two groups (from 7712 ± 324 to 7287 ± 305 mm² and from 7643 ± 317 to 7164 ± 328 mm²; p = 0.61, respectively). Leg muscle strength decreased from 56 ± 4 to 53 ± 4 kg in the CON group and from 63 ± 3 to 55 ± 2 kg in the LEU group (main effect of time p < 0.01), with no differences between the groups (p = 0.052). Type I and II muscle fiber size did not change significantly over time, in both groups (p > 0.05). CONCLUSIONS: Free leucine supplementation with each of the three main meals (7.5 g/d) does not attenuate the decline of muscle mass and strength during a 7-day limb immobilization intervention.


Asunto(s)
Inmovilización/efectos adversos , Pierna , Leucina/administración & dosificación , Músculo Esquelético , Atrofia Muscular/prevención & control , Dieta , Suplementos Dietéticos , Humanos , Rodilla , Masculino , Fuerza Muscular/efectos de los fármacos , Fuerza Muscular/fisiología , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Atrofia Muscular/etiología , Atrofia Muscular/patología , Músculo Cuádriceps/patología , Músculo Cuádriceps/fisiopatología , Adulto Joven
20.
Med Sci Sports Exerc ; 50(1): 36-45, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28846563

RESUMEN

Although endurance exercise training promotes angiogenesis and improves metabolic health, the effect of resistance training on this process is less well defined. We hypothesized that capillarization would increase proportionally, and concurrently, with muscle fiber hypertrophy in response to resistance training in young men. METHODS: In this double-blind, randomized control trial, 36 men (22 ± 1 yr) were randomized to placebo or protein supplementation, and participated in 12 wk of resistance training. Skeletal muscle biopsies were collected before and after 2, 4, 8, and 12 wk of training. Immunohistochemistry assessed fiber type-specific size and capillarization. Western blot and reverse transcription polymerase chain reaction assessed proteins involved in the molecular regulation of angiogenesis. RESULTS: Resistance training effectively increased Type I (15% ± 4%; P < 0.01) and Type II fiber cross-sectional area (28% ± 5%; P < 0.0001), an effect that tended to be further enhanced with protein supplementation in Type II fibers (P = 0.078). Capillary-to-fiber ratio significantly increased in Type I (P = 0.001) and II (P = 0.015) fibers after 12 wk of resistance exercise training and was evident after only 2 wk. Capillary-to-fiber perimeter exchange index increased in the Type I fibers only (P = 0.054) after 12 wk of training. Training resulted in a reduction in vascular endothelial growth factor mRNA. A (P = 0.008), while vascular endothelial growth factor receptor 2 (P = 0.016), hypoxia-inducible factor 1α (P = 0.016), and endothelial nitric oxide synthase (P = 0.01) increased in both groups. Hypoxia-inducible factor 1α protein content was higher in the protein group (main group effect, P = 0.02), and endothelial nitric oxide synthase content demonstrated a divergent relationship (time-group interaction, P = 0.049). CONCLUSIONS: This study presents novel evidence that microvascular adaptations and the molecular pathways involved are elevated after 2 wk of a 12-wk resistance training program. Increases in muscle fiber cross-sectional area are effectively matched by the changes in the microvasculature, providing further support for resistance training programs to optimize metabolic health.


Asunto(s)
Capilares/fisiología , Proteínas en la Dieta/administración & dosificación , Hipertrofia , Músculo Esquelético/fisiología , Neovascularización Fisiológica , Entrenamiento de Fuerza , Suplementos Dietéticos , Método Doble Ciego , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Fibras Musculares Esqueléticas/fisiología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Factores de Tiempo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA