Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nutrients ; 15(13)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37447241

RESUMEN

Brugmansia suaveolens Bercht. & J. Presl has been widely used due to the presence of different bioactive compounds. This review summarizes the latest advances and perspectives of the B. suaveolens plant species; it is a systematic literature review on aspects of botany, traditional uses, phytochemistry, pharmacology, and toxicology as therapeutic potential. In addition, 120 compounds are described, including alkaloids, flavonoids, terpenoids, steroids, amino acids, aromatics, and aliphatics. As for the therapeutic potential, it is described in extracts and compounds in the antitumor, anti-inflammatory, antioxidant, antimicrobial, antispasmodic, anticoagulant, and analgesic aspects, as well as the effects on the central nervous system. The toxicity of the genus stands out, especially the potential for organ toxicity. Therefore, this review evidenced the knowledge related to the traditional use based on the scientific research of Brugmansia suaveolens, highlighting an overview of bioactive compounds and biological and toxicological activities in order to provide a scientific basis for future studies on the value of this species for the development of new natural products.


Asunto(s)
Alcaloides , Brugmansia , Fitoterapia , Medicina Tradicional , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Fitoquímicos/química , Etnofarmacología
2.
J Photochem Photobiol B ; 211: 112010, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32890891

RESUMEN

Nanotechnology, when applied to PDT's, allows the encapsulation of ZnPc in nanocarriers, producing thus nanoemulsions that permit the use of ZnPc as photosensitizers. The Enterococcus faecalis and methicillin-resistant Staphylococcus aureus (MRSA) are microorganisms present in biofilms which can cause resistant endodontic infections. The objective of this work is the development and characterization of clove essential oil nanoemulsions containing ZnPc. The formulations were developed according to factorial experimental planning and characterized by the determination of the mean drop size, Polydispersity Index (PdI), content, organoleptic characteristics, stability, morphology, cytotoxicity in the dark and evaluation of the photobiological activity. The experimental planning was able to indicate the maximum amount of ZnPc that could be encapsulated in the nanoemulsion while maintaining droplet size <50 nm and PdI < 0.2. The surface plots for the response variables indicated a robust region for the combination of Pluronic® F-127 and clove oil factors. The result of this study was the choice of the nanoemulsion containing ZnPc solution at 5%, clove oil at 5%, Pluronic® F-127 at 10% and will be codified as ZnPc-NE. The nanoemulsion presented a mean diameter of 30.52 nm, PDI < 0.2 and a concentration of 17.5 µg/mL, as well as stability at room temperature for 180 days. TEM showed that the drops are spherical with nanometric size, which corroborates the results of dynamic light scattering. Concerning the photobiological activity, the ZnPc-NE exhibited MIC 1.09 µg/mL for Enterococcus faecalis and 0.065 µg/mL for MRSA (Methicillin-resistant Staphylococcus aureus). ZnPc-NE showed higher photobiological activity than free ZnPc. Besides, cytotoxicity studies showed that blank-NE (nanoemulsions without PS) showed good antimicrobial activity. Thus, clove oil nanoemulsion is an excellent nanocarrier to promote the photobiological activity of the ZnPc against pathogenic microorganisms.


Asunto(s)
Antiinfecciosos/química , Emulsiones/química , Indoles/química , Nanocápsulas/química , Compuestos Organometálicos/química , Fármacos Fotosensibilizantes/química , Administración Oral , Antiinfecciosos/farmacología , Supervivencia Celular/efectos de los fármacos , Aceite de Clavo/química , Composición de Medicamentos , Enterococcus faecalis/efectos de los fármacos , Humanos , Indoles/farmacología , Isoindoles , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Compuestos Organometálicos/farmacología , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Poloxámero/química , Compuestos de Zinc
3.
Analyst ; 144(13): 4111-4120, 2019 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-31172988

RESUMEN

The endo-polygalacturonase enzyme (endoPG: EC 3.2.1.15) plays an important role in the fruit juice and wine industries, so the development of new tools for the quantitative and qualitative analysis of its enzymatic action is necessary. In this work, we report the development of a simple, fast and practical method that did not use any chemical reagent to identify and evaluate the action of the endoPG enzyme, produced by the yeast Kluyveromyces marxianus CCT3172, using attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy combined with principal component analysis-linear discriminant analysis (PCA-LDA). This method evaluated the action of the endoPG enzyme on the polygalacturonic acid (PGA) substrate at 5 different times (0, 10, 15, 20 and 30 minutes), and at each time interval the samples were analyzed by ATR-FTIR. It was demonstrated that there was clear segregation between the samples that were and that were not subjected to the action of the endoPG enzyme, and it was also possible to distinguish the samples that were subjected to different incubation times with the enzyme. Through PCA-LDA it was possible to obtain wavelengths that are biomarkers for this enzymatic reaction and the observed changes as a function of hydrolysis duration were found to be in agreement with the breakdown of the glycosidic chain (1011 cm-1-CH-O- CH stretching) of PGA and release of oligosaccharides (1078 cm-1 C-OH elongation). The activity of the endoPG enzyme and the release of galacturonic acid were verified by the dinitrosalicylic acid (DNS) method in all samples. The efficacy of an automatic classifier using a principal component analysis-linear discriminant classifier (PCA-LDC) was evaluated to diagnose the action of the endoPG enzyme. The results showed an accuracy of 100% for the identification of the endoPG enzyme action and from 91.67% to 100% for classification according to the hydrolysis duration in which PGA was exposed to endoPG. The present study indicates that this methodology may be a new approach for the qualitative evaluation of the endoPG enzyme with the potential to be used in laboratories and industries.


Asunto(s)
Kluyveromyces/enzimología , Pectinas/química , Poligalacturonasa/química , Catálisis , Colorimetría , Análisis Discriminante , Hidrólisis , Cinética , Análisis de Componente Principal , Espectroscopía Infrarroja por Transformada de Fourier
4.
Nanotechnology ; 28(6): 065101, 2017 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-28071592

RESUMEN

Photodynamic therapy (PDT) combines light with photosensitizers (PS) for production of reactive oxygen species (ROS) that can kill infectious microorganisms such as bacteria, fungi and protozoa. The application of nanotechnology has enabled the advancement of PDT because many PS are insoluble in water, necessitating a nanocarrier as a physiologically acceptable carrier. Nanoemulsions are efficient nanocarriers for solubilizing liposoluble drugs, like the PS, in water. Cutaneous (CL) and mucocutaneous leishmaniasis (ML) are caused by different species of the genus Leishmania, transmitted to humans by sandfly bites. Parasites are hosted in skin macrophages producing ulcerative lesions. Thus, a topical treatment, effective and inexpensive, for CL and ML is preferable to systemic interventions. There are topical treatments like paromomycin and amphotericin B, but they have many local side effects or a very high cost, limiting their use. This work aimed to develop a zinc phthalocyanine (photosensitizer) oil-in-water nanoemulsion, essential clove oil and polymeric surfactant (Pluronic® F127) for the formulation of a topical delivery system for use in PDT against Leishmania amazonensis and Leishmania infantum. The nanoemulsion was produced by a high-energy method and characterized by size, polydispersity, morphology, pH, content and stability studies. The toxicity in the dark and the photobiological activity of the formulations were evaluated in vitro for Leishmania and macrophages. The formulation presented was pH compatible with topical use, approximately 30 nm in size, with a polydispersity index ≤0.1 and remained stable at room and refrigerator temperature during the stability study (60 days). The zinc phthalocyanine nanoemulsion is effective in PDT against Leishmania spp.; use against skin infections can be a future application of this topical formulation, avoiding the use of oral or injectable medications, decreasing systemic adverse effects.


Asunto(s)
Portadores de Fármacos , Indoles/farmacología , Leishmania infantum/efectos de los fármacos , Leishmania mexicana/efectos de los fármacos , Compuestos Organometálicos/farmacología , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Administración Cutánea , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Aceite de Clavo/química , Composición de Medicamentos/métodos , Emulsiones , Concentración de Iones de Hidrógeno , Indoles/química , Isoindoles , Leishmania infantum/crecimiento & desarrollo , Leishmania infantum/efectos de la radiación , Leishmania mexicana/crecimiento & desarrollo , Leishmania mexicana/efectos de la radiación , Luz , Ratones , Pruebas de Sensibilidad Microbiana , Nanoestructuras/química , Óxido Nítrico , Compuestos Organometálicos/química , Fármacos Fotosensibilizantes/química , Poloxámero/química , Células RAW 264.7 , Compuestos de Zinc
5.
Rev. bras. farmacogn ; 26(2): 251-258, Jan.-Apr. 2016. tab, graf
Artículo en Inglés | LILACS | ID: lil-779016

RESUMEN

ABSTRACT Chronic exposure to solar radiation could contribute to premature skin aging and skin cancer. Skin presents its own antioxidant defense, however when defenses are out of balance, reactive oxygen species could damage biological structures. In the present work, an oil-in-water photoprotective emulsion was developed and Bauhinia microstachya var. massambabensis Vaz, Fabaceae, extracts at 1% (obtained by extraction with different solvents) were added to this emulsion. In vitro and in vivo efficacy and safety of the formulations were evaluated. Spectrophotometric methods and in vivo Colipa test were performed to evaluated efficacy of the formulations, through sun protection factor (SPF) determination and UVA protection factor assessment. To the in vitro safety assessment HET-CAM, CAM-TBS and Red Blood Cell tests were performed. Results showed that both extracts contributed to a higher in vivo photoprotection (SPF 18) when compared to the formulation without extract (SPF 13), this result could be attributed to the antioxidant activity of the plant extracts that act by capturing reactive oxygen species. Concerning safety, all formulations were considered non-irritant according to in vitro tests. Formulations containing extracts could be considered efficient and safe for cosmetic use since they presented higher sun protection factor and passed the toxicity tests.

6.
J Enzyme Inhib Med Chem ; 29(1): 12-7, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23323991

RESUMEN

Abstract Lippia alba (Miller) N.E. Brown is an aromatic plant known locally as "Erva-cidreira-do-campo" that has great importance in Brazilian folk medicine. The aim of our study was to evaluate the antidermatophytic potential of linalool-rich essential oil (EO) from L. alba and analyze the ability of this EO to inhibit peptidase and keratinase activities, which are important virulence factors in dermatophytes. The minimum inhibitory concentrations (MICs) of L. alba EO were 39, 156 and 312 µg/mL against Trichophyton rubrum, Epidermophyton floccosum and Microsporum gypseum, respectively. To evaluate the influence of L. alba EO on the proteolytic and keratinolytic activities of these dermatophytes, specific inhibitory assays were performed. The results indicated that linalool-rich EO from L. alba inhibited the activity of proteases and keratinases secreted from dermatophytes, and this inhibition could be a possible mechanism of action against dermatophytes. Due to the effective antidermatophytic activity of L. alba EO, further experiments should be performed to explore the potential of this linalool-rich EO as an alternative antifungal therapy.


Asunto(s)
Arthrodermataceae/enzimología , Lippia/química , Monoterpenos/análisis , Aceites Volátiles/farmacología , Péptido Hidrolasas/efectos de los fármacos , Inhibidores de Proteasas/farmacología , Monoterpenos Acíclicos , Electroforesis en Gel de Poliacrilamida , Concentración de Iones de Hidrógeno , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA