Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biotechnol Adv ; 34(5): 550-564, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26795876

RESUMEN

Phosphorus (P) is a non-renewable resource, a major plant nutrient that is essential for modern agriculture. Currently, global food and feed production depends on P extracted from finite phosphate rock reserves mainly confined to a small number of countries. P limitation and its potential socio-economic impact may well exceed the potential effects of fossil fuel scarcity. The efficiency of P usage today barely reaches 20%, with the remaining 80% ending up in wastewater or in surface waters as runoff from fields. When recovered from wastewater, either chemically or biologically, P is often present in a form that does not meet specifications for agricultural use. As an alternative, the potential of microalgae to accumulate large quantities of P can be a way to direct this resource back to crop plants. Algae can acquire and store P through luxury uptake, and the P enriched algal biomass can be used as bio-fertilizer. Technology of large-scale algae cultivation has made tremendous progress in the last decades, stimulated by perspectives of obtaining third generation biofuels without requiring arable land or fresh water. These new cultivation technologies can be used for solar-driven recycling of P and other nutrients from wastewater into algae-based bio-fertilizers. In this paper, we review the specifics of P uptake from nutrient-rich waste streams, paying special attention to luxury uptake by microalgal cells and the potential application of P-enriched algal biomass to fertilize crop soils.


Asunto(s)
Productos Agrícolas , Fertilizantes , Microalgas , Fósforo , Aguas Residuales/química , Purificación del Agua , Biotecnología , Fósforo/análisis , Fósforo/química , Fósforo/aislamiento & purificación , Fósforo/metabolismo
2.
PLoS One ; 7(9): e42966, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23049734

RESUMEN

Effects of food quality and quantity on consumers are neither independent nor interchangeable. Although consumer growth and reproduction show strong variation in relation to both food quality and quantity, the effects of food quality or food quantity have usually been studied in isolation. In two experiments, we studied the growth and reproduction in three filter-feeding freshwater zooplankton species, i.e. Daphnia galeata x hyalina, D. pulicaria and D. magna, on their algal food (Scenedesmus obliquus), varying in carbon to phosphorus (C∶P) ratios and quantities (concentrations). In the first experiment, we found a strong positive effect of the phosphorus content of food on growth of Daphnia, both in their early and late juvenile development. Variation in the relationship between the P-content of animals and their growth rate reflected interspecific differences in nutrient requirements. Although growth rates typically decreased as development neared maturation, this did not affect these species-specific couplings between growth rate and Daphnia P-content. In the second experiment, we examined the effects of food quality on Daphnia growth at different levels of food quantity. With the same decrease in P-content of food, species with higher estimated P-content at zero growth showed a larger increase in threshold food concentrations (i.e. food concentration sufficient to meet metabolic requirements but not growth). These results suggest that physiological processes such as maintenance and growth may in combination explain effects of food quality and quantity on consumers. Our study shows that differences in response to variation in food quality and quantity exist between species. As a consequence, species-specific effects of food quality on consumer growth will also determine how species deal with varying food levels, which has implications for resource-consumer interactions.


Asunto(s)
Carbono/metabolismo , Daphnia/fisiología , Alimentos , Fósforo/metabolismo , Reproducción , Scenedesmus/química , Zooplancton/química , Factores de Edad , Animales , Daphnia/clasificación , Femenino , Cadena Alimentaria , Masculino , Dinámica Poblacional/tendencias , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA