Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 12(9): e0184709, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28922365

RESUMEN

Moringa (Moringa oleifera Lam.) seed extract (MSE) has anti-inflammatory and antioxidant activities. We investigated the effects of MSE enriched in moringa isothiocyanate-1 (MIC-1), its putative bioactive, on ulcerative colitis (UC) and its anti-inflammatory/antioxidant mechanism likely mediated through Nrf2-signaling pathway. Dextran sulfate sodium (DSS)-induced acute (n = 8/group; 3% DSS for 5 d) and chronic (n = 6/group; cyclic rotations of 2.5% DSS/water for 30 d) UC was induced in mice that were assigned to 4 experimental groups: healthy control (water/vehicle), disease control (DSS/vehicle), MSE treatment (DSS/MSE), or 5-aminosalicyic acid (5-ASA) treatment (positive control; DSS/5-ASA). Following UC induction, water (vehicle), 150 mg/kg MSE, or 50 mg/kg 5-ASA were orally administered for 1 or 2 wks. Disease activity index (DAI), spleen/colon sizes, and colonic histopathology were measured. From colon and/or fecal samples, pro-inflammatory biomarkers, tight-junction proteins, and Nrf2-mediated enzymes were analyzed at protein and/or gene expression levels. Compared to disease control, MSE decreased DAI scores, and showed an increase in colon lengths and decrease in colon weight/length ratios in both UC models. MSE also reduced colonic inflammation/damage and histopathological scores (modestly) in acute UC. MSE decreased colonic secretions of pro-inflammatory keratinocyte-derived cytokine (KC), tumor necrosis factor (TNF)-α, nitric oxide (NO), and myeloperoxidase (MPO) in acute and chronic UC; reduced fecal lipocalin-2 in acute UC; downregulated gene expression of pro-inflammatory interleukin (IL)-1, IL-6, TNF-α, and inducible nitric oxide synthase (iNOS) in acute UC; upregulated expression of claudin-1 and ZO-1 in acute and chronic UC; and upregulated GSTP1, an Nrf2-mediated phase II detoxifying enzyme, in chronic UC. MSE was effective in mitigating UC symptoms and reducing UC-induced colonic pathologies, likely by suppressing pro-inflammatory biomarkers and increasing tight-junction proteins. This effect is consistent with Nrf2-mediated anti-inflammatory/antioxidant signaling pathway documented for other isothiocyanates similar to MIC-1. Therefore, MSE, enriched with MIC-1, may be useful in prevention and treatment of UC.


Asunto(s)
Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Isotiocianatos/farmacología , Moringa/química , Extractos Vegetales/farmacología , Semillas/química , Animales , Enfermedad Crónica , Claudina-1/metabolismo , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/patología , Colon/metabolismo , Colon/patología , Citocinas/metabolismo , Sulfato de Dextran/toxicidad , Isotiocianatos/química , Lipocalina 2/metabolismo , Masculino , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Peroxidasa/metabolismo , Extractos Vegetales/química , Bazo/metabolismo , Bazo/patología , Uniones Estrechas/metabolismo , Uniones Estrechas/patología , Proteína de la Zonula Occludens-1/metabolismo
2.
Development ; 143(20): 3711-3722, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27802136

RESUMEN

During late gestation, villi extend into the intestinal lumen to dramatically increase the surface area of the intestinal epithelium, preparing the gut for the neonatal diet. Incomplete development of the intestine is the most common gastrointestinal complication in neonates, but the causes are unclear. We provide evidence in mice that Yin Yang 1 (Yy1) is crucial for intestinal villus development. YY1 loss in the developing endoderm had no apparent consequences until late gestation, after which the intestine differentiated poorly and exhibited severely stunted villi. Transcriptome analysis revealed that YY1 is required for mitochondrial gene expression, and ultrastructural analysis confirmed compromised mitochondrial integrity in the mutant intestine. We found increased oxidative phosphorylation gene expression at the onset of villus elongation, suggesting that aerobic respiration might function as a regulator of villus growth. Mitochondrial inhibitors blocked villus growth in a fashion similar to Yy1 loss, thus further linking oxidative phosphorylation with late-gestation intestinal development. Interestingly, we find that necrotizing enterocolitis patients also exhibit decreased expression of oxidative phosphorylation genes. Our study highlights the still unappreciated role of metabolic regulation during organogenesis, and suggests that it might contribute to neonatal gastrointestinal disorders.


Asunto(s)
Mucosa Intestinal/metabolismo , Intestinos/citología , Organogénesis/fisiología , Factor de Transcripción YY1/metabolismo , Aerobiosis/genética , Aerobiosis/fisiología , Animales , Western Blotting , Genotipo , Inmunohistoquímica , Masculino , Ratones , Organogénesis/genética , Fosforilación Oxidativa , Transcriptoma/genética , Factor de Transcripción YY1/genética
3.
Proc Natl Acad Sci U S A ; 111(21): 7695-700, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24821761

RESUMEN

The intestinal stem cell fuels the highest rate of tissue turnover in the body and has been implicated in intestinal disease and cancer; understanding the regulatory mechanisms controlling intestinal stem cell physiology is of great importance. Here, we provide evidence that the transcription factor YY1 is essential for intestinal stem cell renewal. We observe that YY1 loss skews normal homeostatic cell turnover, with an increase in proliferating crypt cells and a decrease in their differentiated villous progeny. Increased crypt cell numbers come at the expense of Lgr5(+) stem cells. On YY1 deletion, Lgr5(+) cells accelerate their commitment to the differentiated population, exhibit increased levels of apoptosis, and fail to maintain stem cell renewal. Loss of Yy1 in the intestine is ultimately fatal. Mechanistically, YY1 seems to play a role in stem cell energy metabolism, with mitochondrial complex I genes bound directly by YY1 and their transcript levels decreasing on YY1 loss. These unappreciated YY1 functions broaden our understanding of metabolic regulation in intestinal stem cell homeostasis.


Asunto(s)
División Celular/fisiología , Regulación de la Expresión Génica/fisiología , Intestinos/citología , Mitocondrias/metabolismo , Células Madre/fisiología , Factor de Transcripción YY1/metabolismo , Animales , Inmunoprecipitación de Cromatina , Perfilación de la Expresión Génica , Ratones , Ratones Noqueados , Análisis por Micromatrices , Microscopía Electrónica de Transmisión , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Madre/metabolismo , Factor de Transcripción YY1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA