Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Food Chem ; 435: 137540, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37778266

RESUMEN

Carnosic (CA) and rosmarinic (RA) acids are the primary phenolic acids in hydrophilic rosemary extracts. Their combination exhibits high antioxidant activity and can be explored in several applications. This study aimed to develop an extraction procedure using bio-based solvents to recover two rosemary extracts, one rich in CA and the other in RA. By using ultrasound-assisted extraction (UAE) and a pool of 34 solvents, we evaluated nominal power (W), extraction time (min), and solvent water percentage (% H2O) regarding yield and selectivity. The authors propose a sequential UAE procedure validated by applying ethanol 99.5 % (v/v), 240 W, and 5 min to recover a rich fraction of 24.0 mgCA.gbiomass-1; followed by a second step using AmAc:LA (1:2 M ratio), 20 % H2O (m/m), 320 W, and 5 min that resulted in 8.4 mgRA.gbiomass-1. Our results indicate that modulating the solvent composition and process temperature is critical to increasing extraction yields and selectivity.


Asunto(s)
Rosmarinus , Solventes , Extractos Vegetales , Antioxidantes , Ácido Rosmarínico
2.
Anal Chim Acta ; 1272: 341494, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37355330

RESUMEN

Analyzing compounds such as polyphenols in solid samples frequently uses a solid-liquid extraction step. The solid-liquid extraction and analysis integration in a single equipment is not commercially available since several challenges are inherent to this hybridization. In the context of developing more sustainable analytical procedures, innovative techniques are demanded. Given that, this work proposes a new integrative system (2D PLE × HPLC-PDA) and presents its validation for bioactive compound extraction and online quantification, discussing the main advantages and cares that need to be taken. Two food byproducts - passion fruit bagasse and coffee husks - were chosen as solid model samples. The system was configured to perform pressurized liquid extraction (PLE) with periodical automated extract injection in the HPLC, consequently obtaining the online quantification of target compounds from the solid samples. In parallel with the online injections, extract fractions were collected and submitted to offline analysis in which the extraction yield of piceatannol and chlorogenic acid and caffeine were evaluated, respectively, for passion fruit bagasse and coffee husks. The extraction yields obtained by online and offline injections were compared and were significantly equal (p > 0.05). Thus, the 2D PLE × HPLC-PDA system represents a feasible tool to integrate solid sample preparation and chemical analysis of biocompounds in a single and online step.


Asunto(s)
Ácido Clorogénico , Polifenoles , Cromatografía Líquida de Alta Presión/métodos , Polifenoles/análisis , Antioxidantes/química , Extractos Vegetales/química
3.
Food Chem ; 406: 135093, 2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-36470084

RESUMEN

Concentrated in the skins of red grapes are the anthocyanins, the primary colorants responsible for the fruits' reddish-purple color. These colorants are recognized for their significant antioxidant properties and potent nutraceutical and pharmaceutical ingredients. Nevertheless, their widespread use is compromised by the (i) need for more efficient yet sustainable downstream processes for their recovery and (ii) by the challenges imposed by their poor stability. In this work, these drawbacks were overcome by applying eutectic solvents and stabilizing agents. Besides, the anthocyanins were successfully loaded into a solid host material (approved in both food and pharmaceutical sectors) based on silicon dioxide (SiO2, loading capacity: 1extract:7silica m/m). Summing up, with the process developed, the extraction yield (21 mganthocyanins.gbiomass-1) and the stability (under 55, 75, and 95 °C) of the recovered anthocyanins were over three times better than with the conventional process. Finally, the raw materials and solvents were recycled, allowing an economical and environmentally friendly downstream process.


Asunto(s)
Vitis , Solventes , Antocianinas , Dióxido de Silicio , Frutas , Preparaciones Farmacéuticas , Extractos Vegetales
4.
Polymers (Basel) ; 14(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36432933

RESUMEN

Barbatimão (Stryphnodendron adstringens) is a Brazilian medicinal plant known for its pharmacological properties, including healing activity related to its phenolic composition, which is chiefly given by tannins. In order to preserve its stability and bioactivity, barbatimão extracts can be incorporated into (bio-)polymeric matrixes, of which silk fibroin stands out due to its versatility and tunable properties. This work aimed to obtain barbatimão bark extract rich in phenolic compounds and evaluate its incorporation in fibroin hydrogels. From the extraction process, it was observed that the PG (propylene glycol) extract presented a higher global yield (X0) and phenolic compounds (TPC) than the ET (ethanol) extract. Furthermore, the antioxidant activity (ORAC and FRAP) was similar between both extracts. Regarding the hydrogels, morphological, chemical, thermal, and mechanical characterizations were performed to understand the influence of the barbatimão extract and the solvent on the fibroin hydrogel properties. As a result, the hydrogels containing the barbatimão PG extract (BT/PG hydrogels) showed the better physical-chemical and structural performance. Therefore, these hydrogels should be further investigated regarding their potential in medical and pharmaceutical applications, especially in wound healing.

5.
Food Res Int ; 161: 111846, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36192975

RESUMEN

Propolis is a rich source of known and largely explored bioactive compounds with many pharmacological properties. It is used in several commercialized products, such as propolis-enriched honey, candies, mouth and throat sprays, soaps, toothpaste, and skin creams. However, the great diversity of propolis products and different types make the standardization of realistic quality control procedures challenging. Moreover, the extraction of propolis bioactive compounds depends on the technique and the solvent used. In Brazil, the Ministry of Agriculture, Livestock, and Supply (MAPA) set standards to establish commercialized propolis extracts' identity and quality. In addition, according to legislation, propolis extracts must present the main classes of phenols at 200 and 400 nm on the UV spectrum. Still, it is not specified which analysis method should be used to guarantee feasible quality control of the commercialized samples. For this, we proposed a new fast UHPLC-PDA-MS/MS method for analysis and quantification of propolis phenolic compounds. Moreover, we hypothesize that there is no efficient monitoring regarding the quality of the propolis extracts sold in Brazilian stores. Therefore, the present study aimed to perform quality control of 17 Brazilian propolis extracts produced in the Southeast region (green or brown - the most representative samples). The dry extract content (% g/mL), oxidation index (seconds), total flavonoids, and phenolics (% m/m) of each sample were compared with legislation. We conclude that using the UHPLC-PDA method and the investigation that allowed the comparison with the current legislation efficiently practical problems in the commercialization of propolis extracts. However, of the 17 analyzed samples, 6 did not meet the desired the recognized standards, denoting a lack of supervision and efficient quality control, which highlights a dangerous situation regarding the commercialization of this critical product used in several industrial fields, mainly in the food and pharmaceutical sector.


Asunto(s)
Própolis , Brasil , Cromatografía Líquida de Alta Presión/métodos , Flavonoides/análisis , Preparaciones Farmacéuticas , Fenoles/análisis , Extractos Vegetales , Própolis/farmacología , Control de Calidad , Estándares de Referencia , Jabones/análisis , Solventes , Espectrometría de Masas en Tándem , Pastas de Dientes/análisis
6.
J Food Biochem ; 46(3): e13885, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34338308

RESUMEN

We evaluated the impact of yellow passion fruit (Passiflora edulis sp.) bagasse extract (PFBE) administration in systemic oxidative and inflammatory parameters in vivo, considering prostate cancer progression in transgenic mice (TRAMP). Piceatannol, scirpusin-B, dicaffeoylquinic acid, citric acid, and (+)-catechin were identified in PFBE, and the extract showed high in vitro antioxidant capacity. Some alterations in systemic parameters were verified during prostate cancer progression, as the increase in ALT and MDA levels, and SOD and GPx activities in the plasma. In the liver, higher MDA, TNF-α, and NF-κB levels, and GR and GPx activities were verified. Compared to their respective controls, the short- and long-term PFBE administration reduced MDA levels in the liver and plasma. The long-term treatment increased the catalase activity in the plasma, while the short-term treatment increased the hepatic SOD and catalase activities. Still, a reduction in hepatic TNF-α and NF-κB levels was verified after long-term treatment. PRACTICAL APPLICATIONS: Prostate cancer progression is associated with changes in systemic redox status and inflammation markers. Moreover, the intake of polyphenols with antioxidant properties, besides delaying prostate carcinogenesis, may improve the systemic antioxidant defenses and inflammatory response. In vitro studies pointed to a promising antioxidant and anti-inflammatory potential of yellow passion fruit bagasse. However, in vivo studies are scarce. Our results provided information about in vivo impacts of PFBE oral consumption on antioxidant defense and inflammation, indicating its potential as an adjuvant during the initial steps of prostate cancer.


Asunto(s)
Passiflora , Neoplasias de la Próstata , Animales , Antioxidantes , Catalasa , Celulosa , Frutas , Humanos , Inflamación/tratamiento farmacológico , Masculino , Ratones , FN-kappa B/genética , Extractos Vegetales/farmacología , Próstata , Neoplasias de la Próstata/tratamiento farmacológico , Superóxido Dismutasa , Factor de Necrosis Tumoral alfa/genética
7.
Int J Mol Sci ; 22(12)2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200696

RESUMEN

Passiflora edulis by-products (PFBP) are a rich source of polyphenols, of which piceatannol has gained special attention recently. However, there are few studies involving environmentally safe methods for obtaining extracts rich in piceatannol. This work aimed to concentrate piceatannol from defatted PFBP (d-PFBP) by means of pressurized liquid extraction (PLE) and conventional extraction, using the bio-based solvents selected with the Hansen solubility parameters approach. The relative energy distance (Ra) between solvent and solute was: Benzyl Alcohol (BnOH) < Ethyl Acetate (EtOAc) < Ethanol (EtOH) < EtOH:H2O. Nonetheless, EtOH presented the best selectivity for piceatannol. Multi-cycle PLE at 110 °C was able to concentrate piceatannol 2.4 times more than conventional extraction. PLE exhibited a dependence on kinetic parameters and temperature, which could be associated with hydrogen bonding forces and the dielectric constant of the solvents. The acetylcholinesterase (AChE) and lipoxygenase (LOX) IC50 were 29.420 µg/mL and 27.682 µg/mL, respectively. The results reinforce the demand for processes to concentrate natural extracts from food by-products.


Asunto(s)
Acetilcolinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Lipooxigenasa/farmacología , Lipooxigenasa/química , Passiflora/química , Extractos Vegetales/farmacología , Frutas/química , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/enzimología , Semillas/química , Solventes/química
8.
Int J Biol Macromol ; 155: 1060-1068, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31712155

RESUMEN

Passion fruit bagasse extract (PFBE) is a rich source of polyphenols, including piceatannol. This work produced alginate (1, 2, 3 wt%) aerogel and investigated the impregnation of gallic acid (GA) and PFBE in alginate aerogel microparticles. The microparticles of ca. 100 µm in diameter were obtained by emulsion-gelation method, submitted to solvent exchange, wet impregnation (WI) and supercritical drying. Alginate aerogels derived from 1 wt% solution led to a higher GA loading and, therefore, this formulation was used to impregnate PFBE. The loading of PFBE, total phenolic, and piceatannol contents based on grams of raw aerogel were 0.62 g, 10.77 mg, and 741.85 µg, respectively, which means a loading efficiency of total phenolics and piceatannol of 47.1% and 34.7%. DSC analysis and X-ray diffraction showed that particles behave as amorphous materials and ORAC assay revealed that impregnated aerogel microparticles presented antioxidant capacity. Alginate aerogel microparticles presented as an appropriated material for drug loading, whereas WI and supercritical drying demonstrated to be useful techniques to load PBBE in aerogels.


Asunto(s)
Alginatos/química , Celulosa/química , Portadores de Fármacos/química , Geles/química , Passiflora/química , Extractos Vegetales/química , Celulosa/aislamiento & purificación , Desecación , Microesferas , Porosidad , Solubilidad , Difracción de Rayos X
9.
Food Res Int ; 115: 160-166, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30599928

RESUMEN

Camu-camu, a typical Amazonian fruit, is known for the high vitamin C content of the peel and pulp. As vitamin C is widely used in the food, pharmaceutical, and cosmetics industries, it is of interest to study new sources, extraction techniques, and analytical methods for the identification and quantification of this compound. Here, evaluation was made of extraction and quantification methods, as well as the differences in vitamin C content according to the origin and part of the camu-camu fruit. The extraction techniques studied were pressurized liquid extraction (PLE), acid extraction, and maceration. The analytical methods evaluated were titrimetry and chromatography. Camu-camu samples were obtained from different regions, and the peel and pulp were studied separately. Acid extraction using sulfuric acid as solvent provided the highest vitamin C yields, while PLE, as a completely clean technique, proved to be a promising alternative for the recovery of ascorbic acid (L-AA). The application of an ultra-high performance liquid chromatography methodology (UHPLC-DAD) enabled the fast identification and quantification of L-AA and dehydroascorbic acid (DHAA), with high resolution, sensitivity, and specificity. The results obtained using the chromatographic and titration methods were not significantly different (p < 0.05), indicating that titrimetry is useful for routine analyses. L-AA and DHAA were found in the peel, but only L-AA was found in the pulp. The variation of vitamin C content among the lots could be explained by the edaphoclimatic conditions. The combination of a clean extraction technique and a fast analytical method is a promising approach for the determination of vitamin C in food products.


Asunto(s)
Ácido Ascórbico/análisis , Frutas/química , Myrtaceae/química , Extractos Vegetales/química , Brasil , Cromatografía Líquida de Alta Presión/métodos , Ácido Deshidroascórbico/análisis , Preparaciones Farmacéuticas/análisis , Sensibilidad y Especificidad , Solventes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA