Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Virulence ; 12(1): 835-851, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33682623

RESUMEN

Biofilm-associated polymicrobial infections tend to be challenging to treat. Candida albicans and Staphylococcus aureus are leading pathogens due to their ability to form biofilms on medical devices. However, the therapeutic implications of their interactions in a host is largely unexplored. In this study, we used a mouse subcutaneous catheter model for in vivo-grown polymicrobial biofilms to validate our in vitro findings on C. albicans-mediated enhanced S. aureus tolerance to vancomycin in vivo. Comparative assessment of S. aureus recovery from catheters with single- or mixed-species infection demonstrated failure of vancomycin against S. aureus in mice with co-infected catheters. To provide some mechanistic insights, RNA-seq analysis was performed on catheter biofilms to delineate transcriptional modulations during polymicrobial infections. C. albicans induced the activation of the S. aureus biofilm formation network via down-regulation of the lrg operon, repressor of autolysis, and up-regulation of the ica operon and production of polysaccharide intercellular adhesin (PIA), indicating an increase in eDNA production, and extracellular polysaccharide matrix, respectively. Interestingly, virulence factors important for disseminated infections, and superantigen-like proteins were down-regulated during mixed-species infection, whereas capsular polysaccharide genes were up-regulated, signifying a strategy favoring survival, persistence and host immune evasion. In vitro follow-up experiments using DNA enzymatic digestion, lrg operon mutant strains, and confocal scanning microscopy confirmed the role of C. albicans-mediated enhanced eDNA production in mixed-biofilms on S. aureus tolerance to vancomycin. Combined, these findings provide mechanistic insights into the therapeutic implications of interspecies interactions, underscoring the need for novel strategies to overcome limitations of current therapies.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Infecciones Relacionadas con Catéteres/tratamiento farmacológico , Coinfección/tratamiento farmacológico , Coinfección/microbiología , Staphylococcus aureus/efectos de los fármacos , Animales , Candida albicans/genética , Infecciones Relacionadas con Catéteres/microbiología , Catéteres/microbiología , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/genética , Factores de Virulencia
2.
Biomater Sci ; 8(12): 3472-3484, 2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32432287

RESUMEN

Dental caries in children is a leading worldwide oral health concern. Combining antibacterial and remineralizing additives within dental sealants is a promising approach for caries prevention. Saliva contains oral bacteria that are indicative of the whole oral microbiome and may have the ability to reflect the dysbiosis present in patients with dental caries. Here, we used the saliva of children at a low and high risk of caries to culture microcosm biofilms resembling caries-associated microbial communities and investigated the changes in the biofilms promoted by the formulated dental sealants containing dimethylaminohexadecyl methacrylate (DMAHDM), a quaternary ammonium monomer, and nanoparticles of amorphous calcium phosphate (NACP). Ten volunteers were selected from each caries-risk condition for saliva collection. Biofilms were grown on the tested sealant samples using a 48 h-microcosm biofilm model. The biofilm growth, metabolic behavior, and bacterial acid production were combined with 16S rRNA sequencing analysis for the assessment of the biofilm grown over the material. The DMAHDM-NACP dental sealant formulations promoted a significant reduction in the population of mutans streptococci, total streptococci, lactobacilli, and total microorganisms in the biofilms regardless of the risk status of the donor child's saliva (p < 0.05). Metabolic and lactic acid production was greatly reduced when in contact with the DMAHDM-NACP sealants in both the sources of inoculum. The relative abundance of the Streptococcus genera derived from patients at a high risk of caries was reduced on contact with the antibacterial sealant. The dental sealant formulations were effective in modulating the growth of the biofilm derived from the saliva of children at a low and high risk of caries. The sealants formulated herein with dual functions and purpose for biointeractivity to prevent biofilm formation and mineral loss can be a reliable complementary strategy to decrease the incidence of carious lesions in children at a high risk of caries.


Asunto(s)
Antibacterianos , Biopelículas/crecimiento & desarrollo , Caries Dental/prevención & control , Selladores de Fosas y Fisuras , Bacterias/genética , Fenómenos Fisiológicos Bacterianos , Fosfatos de Calcio , Niño , Humanos , Metacrilatos , Nanopartículas , Saliva/microbiología
3.
Front Microbiol ; 10: 2642, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31803166

RESUMEN

We have previously reported on the activity of different extracts from Astronium sp. against Candida albicans, with the hydroethanolic extract prepared from leaves of A. urundeuva, an arboreal species widely distributed in arid environments of South America and often used in folk medicine, displaying the highest in vitro activity. Here we have further evaluated the antifungal activity of this extract against strains of C. albicans and C. glabrata, the two most common etiological agents of candidiasis. The extract was tested alone and loaded into a nanostructured lipid system (10% oil phase, 10% surfactant and 80% aqueous phase, 0.5% Poloxamer 407®). In vitro susceptibility assays demonstrated the antifungal activity of the free extract and the microemulsion against both Candida species, with increased activity against C. glabrata, including collection strains and clinical isolates displaying different levels of resistance against the most common clinically used antifungal drugs. Checkerboard results showed synergism when the free extract was combined with amphotericin B against C. albicans. Serial passage experiments confirmed development of resistance to fluconazole but not to the free extract upon prolonged exposure. Although preformed biofilms were intrinsically resistant to treatment with the extract, it was able to inhibit biofilm formation by C. albicans at concentrations comparable to those inhibiting planktonic growth. Cytotoxicity assays in different cell lines as well as an alternative model using Artemia salina L. confirmed a good safety profile of the both free and loaded extracts, and an in vivo assay demonstrated the efficacy of the free and loaded extracts when used topically in a rat model of vaginal candidiasis. Overall, these results reveal the promise of the A. urundeuva leaves extract to be further investigated and developed as an antifungal.

4.
BMC Complement Altern Med ; 15: 68, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25886244

RESUMEN

BACKGROUND: Biofilm formation is important in Candida albicans pathogenesis and constitutes a mechanism of antifungal resistance. Thus, we evaluated the effect of proanthocyanidins polymer-rich fractions from Stryphnodendron adstringens (fraction F2 and subfraction F2.4) against C. albicans biofilms. METHODS: Firstly, the antifungal activity of F2 and F2.4 against planktonic cells of Candida albicans (ATCC 10231) was determined using broth microdilution method. Anti-biofilm effect of F2 and F2.4 was evaluated during biofilm formation or on mature biofilm of C. albicans and compared with standard antifungals amphotericin B and fluconazole. Metabolic activity of sessile and dispersion cells from biofilms after antifungal treatments were measured using a tetrazolium reduction assay and the biofilm total biomass was quantified by crystal violet-based assay. Morphological alterations after treatments were observed using scanning electron microscopy. RESULTS: The anti-biofilm effect of F2 and F2.4 were comparable to standard antifungals (amphotericin B and fluconazole). F2 and F2.4 treatments reduced biofilm metabolic activity (in sessile and in dispersion cells) during biofilm formation, and in mature biofilms, unlike fluconazole, which only prevents the biofilm formation. Treatments with F2, F2.4 or fluconazole reduced biofilm biomass during biofilm formation, but not in mature biofilm. Amphotericin B presented higher inhibitory effect on biofilm formation and on mature biofilm of C. albicans. F2 and F2.4 treatments led to the appearance of dumbbell-shaped blastoconidia and of blastoconidia clusters in biofilms. CONCLUSION: Proanthocyanidins polymer-rich fractions from S. adstringens successfully inhibited C. albicans planktonic growth and biofilm development, and they represent a potential new agent for the treatment of biofilm-associated candidiasis.


Asunto(s)
Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Fabaceae/química , Extractos Vegetales/farmacología , Proantocianidinas/farmacología , Anfotericina B/farmacología , Candida albicans/crecimiento & desarrollo , Fluconazol/farmacología , Pruebas de Sensibilidad Microbiana , Taninos/farmacología , Sales de Tetrazolio
5.
Lasers Med Sci ; 30(3): 1031-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25471266

RESUMEN

Onychomycoses represent approximately 50 % of all nail diseases worldwide. In warmer and more humid countries like Brazil, the incidence of onychomycoses caused by non-dermatophyte molds (NDM, including Fusarium spp.) or yeasts (including Candida albicans) has been increasing. Traditional antifungal treatments used for the dermatophyte-borne disease are less effective against onychomycoses caused by NDM. Although some laser and light treatments have demonstrated clinical efficacy against onychomycosis, their US Food and Drug Administration (FDA) approval as "first-line" therapy is pending, partly due to the lack of well-demonstrated fungicidal activity in a reliable in vitro model. Here, we describe a reliable new in vitro model to determine the fungicidal activity of laser and light therapies against onychomycosis caused by Fusarium oxysporum and C. albicans. Biofilms formed in vitro on sterile human nail fragments were treated with 1064 nm neodymium-doped yttrium aluminum garnet laser (Nd:YAG), 420 nm intense pulsed light (IPL) IPL 420, followed by Nd:YAG, or near-infrared light ((NIR) 700-1400 nm). Light and laser antibiofilm effects were evaluated using cell viability assay and scanning electron microscopy (SEM). All treatments were highly effective against C. albicans and F. oxysporum biofilms, resulting in decreases in cell viability of 45-60 % for C. albicans and 92-100 % for F. oxysporum. The model described here yielded fungicidal activities that matched more closely to those observed in the clinic, when compared to published in vitro models for laser and light therapies. Thus, our model might represent an important tool for the initial testing, validation, and "fine-tuning" of laser and light therapies against onychomycosis.


Asunto(s)
Biopelículas/efectos de la radiación , Terapia por Luz de Baja Intensidad , Viabilidad Microbiana/efectos de la radiación , Onicomicosis/microbiología , Adulto , Candida albicans/fisiología , Candida albicans/efectos de la radiación , Femenino , Fusarium/fisiología , Fusarium/efectos de la radiación , Humanos , Láseres de Estado Sólido , Modelos Biológicos , Onicomicosis/radioterapia , Fototerapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA