Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Public Health ; 9: 705225, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858915

RESUMEN

Coffee production is a global industry with roasteries throughout the world. Workers in this industry are exposed to complex mixtures of gases, dusts, and vapors including carbon monoxide, carbon dioxide, coffee dust, allergens, alpha-diketones, and other volatile organic compounds (VOCs). Adverse respiratory health outcomes such as respiratory symptoms, reduced pulmonary function, asthma, and obliterative bronchiolitis can occur among exposed workers. In response to health hazard evaluations requests received from 17 small- to medium-sized coffee facilities across the United States, the National Institute for Occupational Safety and Health conducted investigations during 2016-2017 to understand the burden of respiratory abnormalities, exposure characteristics, relationships between exposures and respiratory effects, and opportunities for exposure mitigation. Full-shift, task-based, and instantaneous personal and area air samples for diacetyl, 2,3-pentanedione and other VOCs were collected, and engineering controls were evaluated. Medical evaluations included questionnaire, spirometry, impulse oscillometry, and fractional exhaled nitric oxide. Exposure and health assessments were conducted using standardized tools and approaches, which enabled pooling data for aggregate analysis. The pooled data provided a larger population to better address the requestors' concern of the effect of exposure to alpha-diketones on the respiratory heath of coffee workers. This paper describes the rationale for the exposure and health assessment strategy, the approach used to achieve the study objectives, and its advantages and limitations.


Asunto(s)
Bronquiolitis Obliterante , Exposición Profesional , Bronquiolitis Obliterante/etiología , Café/efectos adversos , Diacetil/efectos adversos , Diacetil/análisis , Industria de Alimentos , Humanos , Exposición Profesional/efectos adversos , Exposición Profesional/análisis , Estados Unidos
2.
Artículo en Inglés | MEDLINE | ID: mdl-33720803

RESUMEN

Measurement of skin exposure to particles using interception (e.g., cotton gloves) and removal (e.g., wiping) sampling techniques could be inaccurate because these substrates do not have the same topography and adhesion characteristics as skin. The objective of this study was to compare particle transfer and adherence to cotton gloves, cotton gloves with artificial sebum, and a pre-moistened polyvinyl alcohol (PVA) material with bare human skin (fingertip, palm). Experiments were performed with aluminum oxide powder under standardized conditions for three types of surfaces touched, applied loads, contact times, and powder mass levels. In the final mixed model, the fixed effects of substrate, surface type, applied load, and powder mass and their significant two-way interaction terms explained 71% (transfer) and 74% (adherence) of the observed total variance in measurements. For particle mass transfer, compared with bare skin, bias was -77% (cotton glove with sebum) to +197% (PVA material) and for adherence bias ranged from -40% (cotton glove) to +428% (PVA material), which indicated under- and over-sampling by these substrates, respectively. Dermal exposure assessment would benefit from sampling substrates that better reflect human skin characteristics and more accurately estimate exposures. Mischaracterization of dermal exposure has important implications for exposure and risk assessment.


Asunto(s)
Exposición a Riesgos Ambientales/análisis , Piel/metabolismo , Manejo de Especímenes , Adhesividad , Óxido de Aluminio/análisis , Óxido de Aluminio/química , Óxido de Aluminio/metabolismo , Fibra de Algodón , Humanos , Alcohol Polivinílico/química , Polvos/análisis , Polvos/química , Polvos/metabolismo , Absorción Cutánea
3.
Front Public Health ; 8: 561740, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33072698

RESUMEN

Roasted coffee and many coffee flavorings emit volatile organic compounds (VOCs) including diacetyl and 2,3-pentanedione. Exposures to VOCs during roasting, packaging, grinding, and flavoring coffee can negatively impact the respiratory health of workers. Inhalational exposures to diacetyl and 2,3-pentanedione can cause obliterative bronchiolitis. This study summarizes exposures to and emissions of VOCs in 17 coffee roasting and packaging facilities that included 10 cafés. We collected 415 personal and 760 area full-shift, and 606 personal task-based air samples for diacetyl, 2,3-pentanedione, 2,3-hexanedione, and acetoin using silica gel tubes. We also collected 296 instantaneous activity and 312 instantaneous source air measurements for 18 VOCs using evacuated canisters. The highest personal full-shift exposure in part per billion (ppb) to diacetyl [geometric mean (GM) 21 ppb; 95th percentile (P95) 79 ppb] and 2,3-pentanedione (GM 15 ppb; P95 52 ppb) were measured for production workers in flavored coffee production areas. These workers also had the highest percentage of measurements above the NIOSH Recommended Exposure Limit (REL) for diacetyl (95%) and 2,3-pentanedione (77%). Personal exposures to diacetyl (GM 0.9 ppb; P95 6.0 ppb) and 2,3-pentanedione (GM 0.7 ppb; P95 4.4 ppb) were the lowest for non-production workers of facilities that did not flavor coffee. Job groups with the highest personal full-shift exposures to diacetyl and 2,3-pentanedione were flavoring workers (GM 34 and 38 ppb), packaging workers (GM 27 and 19 ppb) and grinder operator (GM 26 and 22 ppb), respectively, in flavored coffee facilities, and packaging workers (GM 8.0 and 4.4 ppb) and production workers (GM 6.3 and 4.6 ppb) in non-flavored coffee facilities. Baristas in cafés had mean full-shift exposures below the RELs (GM 4.1 ppb diacetyl; GM 4.6 ppb 2,3-pentanedione). The tasks, activities, and sources associated with flavoring in flavored coffee facilities and grinding in non-flavored coffee facilities, had some of the highest GM and P95 estimates for both diacetyl and 2,3-pentanedione. Controlling emissions at grinding machines and flavoring areas and isolating higher exposure areas (e.g., flavoring, grinding, and packaging areas) from the main production space and from administrative or non-production spaces is essential for maintaining exposure control.


Asunto(s)
Exposición Profesional , Compuestos Orgánicos Volátiles , Café/efectos adversos , Diacetil/efectos adversos , Humanos , Exposición Profesional/análisis , Pentanonas , Estados Unidos , Compuestos Orgánicos Volátiles/análisis
4.
Front Public Health ; 8: 5, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32083049

RESUMEN

Introduction: Respiratory hazards in the coffee roasting and packaging industry can include asthmagens such as green coffee bean and other dust and alpha-diketones such as diacetyl and 2,3-pentanedione that can occur naturally from roasting coffee or artificially from addition of flavoring to coffee. We sought to describe the burden of respiratory abnormalities among workers at 17 coffee roasting and packaging facilities. Methods: We completed medical surveys at 17 coffee roasting and packaging facilities that included interviewer-administered questionnaires and pulmonary function testing. We summarized work-related symptoms, diagnoses, and spirometry testing results among all participants. We compared health outcomes between participants who worked near flavoring and who did not. Results: Participants most commonly reported nose and eye symptoms, and wheeze, with a work-related pattern for some. Symptoms and pulmonary function tests were consistent with work-related asthma in some participants. About 5% of workers had abnormal spirometry and most improved after bronchodilator. Health outcomes were similar between employees who worked near flavoring and who did not, except employees who worked near flavoring reported more chronic bronchitis and ever receiving a diagnosis of asthma than those who did not work near flavoring. Conclusion: The symptoms and patterns likely represent overlapping health effects of different respiratory hazards, including green coffee bean and other dust that can contribute to work-related asthma, and diacetyl and 2,3-pentanedione that can contribute to obliterative bronchiolitis. Healthcare providers and occupational health and safety practitioners should be aware that workers at coffee roasting and packaging facilities are potentially at risk for occupational lung diseases.


Asunto(s)
Enfermedades Profesionales , Exposición Profesional , Café , Diacetil/análisis , Aromatizantes/análisis , Humanos , Enfermedades Profesionales/inducido químicamente , Exposición Profesional/efectos adversos
5.
J Occup Environ Hyg ; 11(9): 591-603, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24568319

RESUMEN

Respiratory problems are common among wildland firefighters. However, there are few studies directly linking occupational exposures to respiratory effects in this population. Our objective was to characterize wildland fire fighting occupational exposures and assess their associations with cross-shift changes in lung function. We studied 17 members of the Alpine Interagency Hotshot Crew with environmental sampling and pulmonary function testing during a large wildfire. We characterized particles by examining size distribution and mass concentration, and conducting elemental and morphological analyses. We examined associations between cross-shift lung function change and various analytes, including levoglucosan, an indicator of wood smoke from burning biomass. The levoglucosan component of the wildfire aerosol showed a predominantly bimodal size distribution: a coarse particle mode with a mass median aerodynamic diameter about 12 µm and a fine particle mode with a mass median aerodynamic diameter < 0.5 µm. Levoglucosan was found mainly in the respirable fraction and its concentration was higher for fire line construction operations than for mop-up operations. Larger cross-shift declines in forced expiratory volume in one second were associated with exposure to higher concentrations of respirable levoglucosan (p < 0.05). Paired analyses of real-time personal air sampling measurements indicated that higher carbon monoxide (CO) concentrations were correlated with higher particulate concentrations when examined by mean values, but not by individual data points. However, low CO concentrations did not provide reliable assurance of concomitantly low particulate concentrations. We conclude that inhalation of fine smoke particles is associated with acute lung function decline in some wildland firefighters. Based on short-term findings, it appears important to address possible long-term respiratory health issues for wildland firefighters. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resources: a file containing additional information on historical studies of wildland fire exposures, a file containing the daily-exposure-severity questionnaire completed by wildland firefighter participants at the end of each day, and a file containing additional details of the investigation of correlations between carbon monoxide concentrations and other measured exposure factors in the current study.].


Asunto(s)
Contaminantes Ocupacionales del Aire/efectos adversos , Bomberos , Exposición por Inhalación/efectos adversos , Pulmón/fisiopatología , Exposición Profesional/efectos adversos , Humo/efectos adversos , Adulto , Aerosoles/efectos adversos , Aerosoles/análisis , Aerosoles/química , Contaminantes Ocupacionales del Aire/análisis , Contaminantes Ocupacionales del Aire/química , Biomarcadores/análisis , Pruebas Respiratorias , Carbono/efectos adversos , Carbono/análisis , Monóxido de Carbono/efectos adversos , Monóxido de Carbono/análisis , Femenino , Volumen Espiratorio Forzado , Glucosa/efectos adversos , Glucosa/análogos & derivados , Glucosa/análisis , Glucosa/química , Humanos , Exposición por Inhalación/análisis , Masculino , Exposición Profesional/análisis , Tamaño de la Partícula , Dióxido de Silicio/efectos adversos , Dióxido de Silicio/análisis , Humo/análisis , Espirometría , Encuestas y Cuestionarios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA