Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Clin Endocrinol (Oxf) ; 92(4): 273-281, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31889334

RESUMEN

Sunlight exposure of the skin is associated with both risks and benefits. On one hand, sunlight ultraviolet (UV) radiation can cause skin cancer through signature DNA mutations. On the other hand, it can be absorbed in the skin by 7-dehydrocholesterol to instigate endogenous synthesis of vitamin D to regulate anticancer effects. Thus, protecting one's skin from sunlight to avoid skin cancer may lead to impaired vitamin D levels arguing for sensible sun exposure practices. To limit cancer, vitamin D metabolites can promote uncharacterized and diverse sets of events such as repair responses to DNA damage, apoptosis of malignant cells, and suppression of immune surveillance, proliferation and angiogenesis. Recent findings also suggest that part of the anticancer effects of vitamin D within squamous cell carcinoma-a type of skin cancer most directly linked to sun exposure-involves the DDIT4-mTOR catabolic signalling pathway to enhance cell autophagy. As mTOR activity and cellular metabolism are modulated as part of the DNA damage response, insights into the means by which mTOR can be controlled by vitamin D to suppress cancer is of molecular and clinical importance. Overall, the research so far suggests that presence of vitamin D through sunlight exposure and supplementation are beneficial for human health in the face of cancer.


Asunto(s)
Neoplasias Cutáneas , Vitamina D , Humanos , Piel , Luz Solar , Rayos Ultravioleta , Vitaminas
2.
Cell Rep ; 21(2): 517-532, 2017 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-29020636

RESUMEN

The human cerebral cortex possesses distinct structural and functional features that are not found in the lower species traditionally used to model brain development and disease. Accordingly, considerable attention has been placed on the development of methods to direct pluripotent stem cells to form human brain-like structures termed organoids. However, many organoid differentiation protocols are inefficient and display marked variability in their ability to recapitulate the three-dimensional architecture and course of neurogenesis in the developing human brain. Here, we describe optimized organoid culture methods that efficiently and reliably produce cortical and basal ganglia structures similar to those in the human fetal brain in vivo. Neurons within the organoids are functional and exhibit network-like activities. We further demonstrate the utility of this organoid system for modeling the teratogenic effects of Zika virus on the developing brain and identifying more susceptibility receptors and therapeutic compounds that can mitigate its destructive actions.


Asunto(s)
Antirretrovirales/farmacología , Corteza Cerebral/citología , Evaluación Preclínica de Medicamentos/métodos , Organoides/virología , Cultivo Primario de Células/métodos , Virus Zika/efectos de los fármacos , Línea Celular , Corteza Cerebral/virología , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/virología , Humanos , Neuronas/citología , Neuronas/metabolismo , Neuronas/virología , Organoides/citología , Organoides/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Factor de Transcripción STAT3/metabolismo , Tirosina Quinasa c-Mer/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA