Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Drug Metab Dispos ; 45(1): 35-41, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27777246

RESUMEN

Induction of cytochrome P450 (P450) can impact the efficacy and safety of drug molecules upon multiple dosing with coadministered drugs. This strategy is focused on CYP3A since the majority of clinically relevant cases of P450 induction are related to these enzymes. However, the in vitro evaluation of induction is applicable to other P450 enzymes; however, the in vivo relevance cannot be assessed because the scarcity of relevant clinical data. In the preclinical phase, compounds are screened using pregnane X receptor reporter gene assay, and if necessary structure-activity relationships (SAR) are developed. When projects progress toward the clinical phase, induction studies in a hepatocyte-derived model using HepaRG cells will generate enough robust data to assess the compound's induction liability in vivo. The sensitive CYP3A biomarker 4ß-hydroxycholesterol is built into the early clinical phase I studies for all candidates since rare cases of in vivo induction have been found without any induction alerts from the currently used in vitro methods. Using this model, the AstraZeneca induction strategy integrates in vitro assays and in vivo studies to make a comprehensive assessment of the induction potential of new chemical entities. Convincing data that support the validity of both the in vitro models and the use of the biomarker can be found in the scientific literature. However, regulatory authorities recommend the use of primary human hepatocytes and do not advise the use of sensitive biomarkers. Therefore, primary human hepatocytes and midazolam studies will be conducted during the clinical program as required for regulatory submission.


Asunto(s)
Citocromo P-450 CYP3A/biosíntesis , Evaluación Preclínica de Medicamentos/métodos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/etiología , Preparaciones Farmacéuticas/metabolismo , Bioensayo , Línea Celular Tumoral , Interacciones Farmacológicas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/enzimología , Hepatocitos/efectos de los fármacos , Hepatocitos/enzimología , Humanos
2.
Sci Rep ; 5: 11827, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26168713

RESUMEN

With the diminishing effectiveness of current antibacterial therapies, it is critically important to discover agents that operate by a mechanism that circumvents existing resistance. ETX0914, the first of a new class of antibacterial agent targeted for the treatment of gonorrhea, operates by a novel mode-of-inhibition against bacterial type II topoisomerases. Incorporating an oxazolidinone on the scaffold mitigated toxicological issues often seen with topoisomerase inhibitors. Organisms resistant to other topoisomerase inhibitors were not cross-resistant with ETX0914 nor were spontaneous resistant mutants to ETX0914 cross-resistant with other topoisomerase inhibitor classes, including the widely used fluoroquinolone class. Preclinical evaluation of ETX0914 pharmacokinetics and pharmacodynamics showed distribution into vascular tissues and efficacy in a murine Staphylococcus aureus infection model that served as a surrogate for predicting efficacious exposures for the treatment of Neisseria gonorrhoeae infections. A wide safety margin to the efficacious exposure in toxicological evaluations supported progression to Phase 1. Dosing ETX0914 in human volunteers showed sufficient exposure and minimal adverse effects to expect a highly efficacious anti-gonorrhea therapy.


Asunto(s)
Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Barbitúricos/farmacología , Barbitúricos/uso terapéutico , Gonorrea/tratamiento farmacológico , Compuestos de Espiro/farmacología , Compuestos de Espiro/uso terapéutico , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/uso terapéutico , Adulto , Animales , Antibacterianos/química , Barbitúricos/química , ADN-Topoisomerasas de Tipo II/química , Modelos Animales de Enfermedad , Perros , Relación Dosis-Respuesta a Droga , Farmacorresistencia Bacteriana , Femenino , Fluoroquinolonas/farmacología , Gonorrea/microbiología , Haplorrinos , Humanos , Isoxazoles , Masculino , Ratones , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Modelos Moleculares , Conformación Molecular , Morfolinas , Mutación , Neisseria gonorrhoeae/efectos de los fármacos , Neisseria gonorrhoeae/genética , Oxazolidinonas , Ratas , Compuestos de Espiro/química , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Inhibidores de Topoisomerasa II/química , Adulto Joven
3.
Drug Metab Dispos ; 39(1): 106-16, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20952552

RESUMEN

It is important to gain an understanding of the pharmacological activities of metabolite(s) of compounds in development, especially if they are found in systemic circulation in humans. Pharmacological evaluation of metabolites is normally conducted with synthetic standards, which become available during various stages of drug development. However, the synthesis of metabolite standards may be protracted, taking anywhere from several weeks to months to be completed. This often slows down early pharmacological evaluation of metabolites. Once a metabolite(s) is found to possess comparable (or greater) pharmacological activity than the parent compound, additional studies are performed to better understand the implications of circulating pharmacologically active metabolite(s). To conduct some of these studies as early as possible without slowing the progression of a compound in development is important, especially if critical go or no-go decisions impinge on the outcomes from these studies. Early pharmacological evaluation of significant metabolites is hereby proposed to be conducted in the drug discovery stage so that all pertinent studies and information can be gathered in a timely manner for decision-making. It is suggested that these major metabolites be isolated, either from biological or chemical sources, and quantified appropriately. For biologically generated metabolites, NMR is proposed as the tool of choice to quantitate these metabolites before their evaluation in pharmacological assays. For metabolites that have the same UV characteristics as the parent compound, quantitation can be conducted using UV spectroscopy instead of NMR. In this article, we propose a strategy that could be used to determine the pharmacological activities of metabolites isolated in submilligram quantities.


Asunto(s)
Descubrimiento de Drogas , Microsomas Hepáticos/metabolismo , Preparaciones Farmacéuticas/metabolismo , Animales , Evaluación Preclínica de Medicamentos , Humanos , Macaca fascicularis , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Masculino , Preparaciones Farmacéuticas/química , Ratas , Ratas Sprague-Dawley , Estereoisomerismo , Relación Estructura-Actividad
4.
Chem Res Toxicol ; 22(2): 311-22, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19067650

RESUMEN

The recent guidance on "Safety Testing of Drug Metabolites" issued by the U.S. Food and Drug Administration, Center for Drug Evaluation and Research (CDER) has highlighted the importance of identifying and characterizing drug metabolites as early as possible in drug discovery and development. Furthermore, upon identifying significant circulating metabolites in human plasma, it has become important to demonstrate that these metabolites are present at an equal or greater exposure level (area under the curve, AUC) in any one of the preclinical species used in safety testing. Frequently, synthetic standards of metabolites are not available, and hence, obtaining their AUC values can be a challenge. In this report, we demonstrate how combinations of nuclear magnetic resonance (NMR) spectroscopy, liquid chromatography/ultraviolet/mass spectrometry (LC/UV/MS), and plasma pooling methods were used to obtain reliable AUC values of metabolites present in the plasma of preclinical species from short-term safety studies. Plasma pooling methods were compared to the traditional approaches of obtaining quantitative information on the levels of circulating metabolites in preclinical species. The exposure values obtained via sample pooling were comparable to those obtained by traditional methods of analyzing samples individually. In the absence of synthetic chemical standards, calculations of AUC values of metabolites, using either sample pooling or traditional approaches, were achieved through the use of UV detectors. In cases where the UV properties of metabolites were significantly different from their parent compounds, NMR was used as a quantitative tool to obtain exposure values. NMR was found to be useful in quantitating biologically produced metabolites, which could subsequently be used as reference compounds for further quantitative studies. The limitations of UV detectors to obtain exposure estimates are discussed. A practical solution is presented that will enable us to obtain a quantitative assessment of metabolite exposure in humans and coverage in toxicology species, hence, circumventing the use of radiolabeled compounds or authentic chemically synthesized standards of metabolites.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Preparaciones Farmacéuticas/sangre , Pruebas de Toxicidad/métodos , Algoritmos , Animales , Área Bajo la Curva , Cromatografía Líquida de Alta Presión , Perros , Evaluación Preclínica de Medicamentos , Femenino , Masculino , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo , Radioisótopos/química , Ratas , Estándares de Referencia , Espectrofotometría Ultravioleta , Espectrometría de Masas en Tándem , Pruebas de Toxicidad/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA