Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Carbohydr Polym ; 136: 710-20, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26572404

RESUMEN

Levan, fructose-composed biopolymer of bacterial origin, has potential in biotechnology due to its prebiotic and immunostimulatory properties. In this study levan synthesized by levansucrase from Pseudomonas syringae was thoroughly characterized and used as multifunctional biocompatible coating material for microelement-nanoparticles (NPs) of selenium, iron and cobalt. Transmission electron microscopy (TEM), hydrodynamic size measurements (DLS) and X-ray photoelectron spectroscopy (XPS) showed the interaction of levan with NPs. Levan stabilized the dispersions of NPs, decreased their toxicity and had protective effect on human intestinal cells Caco-2. In addition, levan attached to cobalt NPs remained accessible as a substrate for the colon bacteria Bacteroides thetaiotaomicron. We suggest that the combination of levan and nutritionally important microelements in the form of NPs serves as a first step towards a novel "2 in 1" approach for food supplements to provide safe and efficient delivery of microelements for humans and support beneficial gut microbiota with nutritional oligosaccharides.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Fructanos/química , Nanopartículas/química , Oligoelementos/química , Bacteroides/efectos de los fármacos , Células CACO-2 , Materiales Biocompatibles Revestidos/efectos adversos , Materiales Biocompatibles Revestidos/farmacología , Enterocitos/efectos de los fármacos , Fructanos/efectos adversos , Fructanos/farmacología , Humanos
2.
Front Nutr ; 1: 21, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25988123

RESUMEN

Bacteroides thetaiotaomicron is commonly found in the human colon and stabilizes its ecosystem by catabolism of various polysaccharides. A model of cross-talk between the metabolism of amino acids and fructans in B. thetaiotaomicron was proposed. The growth of B. thetaiotaomicron DSM 2079 in two defined media containing mineral salts and vitamins, and supplemented with either 20 or 2 amino acids, was studied in an isothermal microcalorimeter. The polyfructans inulin (from chicory) and levan (synthesized using levansucrase from Pseudomonas syringae), two fructooligosaccharide preparations with different composition, sucrose and fructose were tested as substrates. The calorimetric power-time curves were substrate specific and typically multiauxic. A surplus of amino acids reduced the consumption of longer oligosaccharides (degree of polymerization > 3). Bacterial growth was not detected either in the carbohydrate free medium containing amino acids or in the medium with inulin as a sole carbohydrate. In amino acid-restricted medium, fermentation leading to acetic acid formation was dominant at the beginning of growth (up to 24 h), followed by increased lactic acid production, and mainly propionic and succinic acids were produced at the end of fermentation. In the medium supplemented with 20 amino acids, the highest production of d-lactate (82 ± 33 mmol/gDW) occurred in parallel with extensive consumption (up to 17 mmol/gDW) of amino acids, especially Ser, Thr, and Asp. The production of Ala and Glu was observed at growth on all substrates, and the production was enhanced under amino acid deficiency. The study revealed the influence of amino acids on fructan metabolism in B. thetaiotaomicron and showed that defined growth media are invaluable in elucidating quantitative metabolic profiles of the bacteria. Levan was shown to act as an easily degradable substrate for B. thetaiotaomicron. The effect of levan on balancing or modifying colon microbiota will be studied in further experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA