Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Theor Appl Genet ; 137(4): 79, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472376

RESUMEN

KEY MESSAGE: Multiple QTLs control unreduced pollen production in potato. Two major-effect QTLs co-locate with mutant alleles of genes with homology to AtJAS, a known regulator of meiotic spindle orientation. In diploid potato the production of unreduced gametes with a diploid (2n) rather than a haploid (n) number of chromosomes has been widely reported. Besides their evolutionary important role in sexual polyploidisation, unreduced gametes also have a practical value for potato breeding as a bridge between diploid and tetraploid germplasm. Although early articles argued for a monogenic recessive inheritance, the genetic basis of unreduced pollen production in potato has remained elusive. Here, three diploid full-sib populations were genotyped with an amplicon sequencing approach and phenotyped for unreduced pollen production across two growing seasons. We identified two minor-effect and three major-effect QTLs regulating this trait. The two QTLs with the largest effect displayed a recessive inheritance and an additive interaction. Both QTLs co-localised with genes encoding for putative AtJAS homologs, a key regulator of meiosis II spindle orientation in Arabidopsis thaliana. The function of these candidate genes is consistent with the cytological phenotype of mis-oriented metaphase II plates observed in the parental clones. The alleles associated with elevated levels of unreduced pollen showed deleterious mutation events: an exonic transposon insert causing a premature stop, and an amino acid change within a highly conserved domain. Taken together, our findings shed light on the natural variation underlying unreduced pollen production in potato and will facilitate interploidy breeding by enabling marker-assisted selection for this trait.


Asunto(s)
Arabidopsis , Solanum tuberosum , Fitomejoramiento , Polen/genética , Genotipo , Arabidopsis/genética , Meiosis
2.
BMC Genomics ; 25(1): 274, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475714

RESUMEN

BACKGROUND: Tuber starch and steroidal glycoalkaloid (SGA)-related traits have been consistently prioritized in potato breeding, while allelic variation pattern of genes that underlie these traits is less explored. RESULTS: Here, we focused on the genes involved in two important metabolic pathways in the potato: starch metabolism and SGA biosynthesis. We identified 119 genes consisting of 81 involved in starch metabolism and 38 in the biosynthesis of steroidal glycoalkaloids, and discovered 96,166 allelic variants among 2,169 gene haplotypes in six autotetraploid potato genomes. Comparative analyses revealed an uneven distribution of allelic variants among gene haplotypes and that the vast majority of deleterious mutations in these genes are retained in heterozygous state in the autotetraploid potato genomes. Leveraging full-length cDNA sequencing data, we find that approximately 70% of haplotypes of the 119 genes are transcribable. Population genetic analyses identify starch and SGA biosynthetic genes that are potentially conserved or diverged between potato varieties with varying starch or SGA content. CONCLUSIONS: These results deepen the understanding of haplotypic diversity within functionally important genes in autotetraploid genomes and may facilitate functional characterization of genes or haplotypes contributing to traits related to starch and SGA in potato.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/genética , Almidón/metabolismo , Fitomejoramiento , Alelos , Fenotipo , Esteroides
3.
G3 (Bethesda) ; 14(4)2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38243613

RESUMEN

Multienvironment genomic prediction was applied to tetraploid potato using 147 potato varieties, tested for 2 years, in 3 locations representative of 3 distinct regions in Europe. Different prediction scenarios were investigated to help breeders predict genotypic performance in the regions from one year to the next, for genotypes that were tested this year (scenario 1), as well as new genotypes (scenario 3). In scenario 2, we predicted new genotypes for any one of the 6 trials, using all the information that is available. The choice of prediction model required assessment of the variance-covariance matrix in a mixed model that takes into account heterogeneity of genetic variances and correlations. This was done for each analyzed trait (tuber weight, tuber length, and dry matter) where examples of both limited and higher degrees of heterogeneity was observed. This explains why dry matter did not need complex multienvironment modeling to combine environments and increase prediction ability, while prediction in tuber weight, improved only when models were flexible enough to capture the heterogeneous variances and covariances between environments. We also found that the prediction abilities in a target trial condition decreased, if trials with a low genetic correlation to the target were included when training the model. Genomic prediction in tetraploid potato can work once there is clarity about the prediction scenario, a suitable training set is created, and a multienvironment prediction model is chosen based on the patterns of G×E indicated by the genetic variances and covariances.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/genética , Tetraploidía , Fenotipo , Genotipo , Genómica
4.
Genetics ; 226(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37943687

RESUMEN

The balanced segregation of homologous chromosomes during meiosis is essential for fertility and is mediated by crossovers (COs). A strong reduction of CO number leads to the unpairing of homologous chromosomes after the withdrawal of the synaptonemal complex. This results in the random segregation of univalents during meiosis I and ultimately to the production of unbalanced and sterile gametes. However, if CO shortage is combined with another meiotic alteration that restitutes the first meiotic division, then uniform and balanced unreduced male gametes, essentially composed of nonrecombinant homologs, are produced. This mitosis-like division is of interest to breeders because it transmits most of the parental heterozygosity to the gametes. In potato, CO shortage, a recessive trait previously referred to as desynapsis, was tentatively mapped to chromosome 8. In this article, we have fine-mapped the position of the CO shortage locus and identified StMSH4, an essential component of the class I CO pathway, as the most likely candidate gene. A 7 base-pair insertion in the second exon of StMSH4 was found to be associated with CO shortage in our mapping population. We also identified a second allele with a 3,820 base-pair insertion and confirmed that both alleles cannot complement each other. Such nonfunctional alleles appear to be common in potato cultivars. More than half of the varieties we tested are carriers of mutational load at the StMSH4 locus. With this new information, breeders can choose to remove alleles associated with CO shortage from their germplasm to improve fertility or to use them to produce highly uniform unreduced male gametes in alternative breeding schemes.


Asunto(s)
Infertilidad , Solanum tuberosum , Alelos , Solanum tuberosum/genética , Fitomejoramiento , Meiosis/genética , Polen/genética , Infertilidad/genética
5.
Elife ; 122023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37751372

RESUMEN

Plants with innate disease and pest resistance can contribute to more sustainable agriculture. Natural defence compounds produced by plants have the potential to provide a general protective effect against pathogens and pests, but they are not a primary target in resistance breeding. Here, we identified a wild relative of potato, Solanum commersonii, that provides us with unique insight in the role of glycoalkaloids in plant immunity. We cloned two atypical resistance genes that provide resistance to Alternaria solani and Colorado potato beetle through the production of tetraose steroidal glycoalkaloids (SGA). Moreover, we provide in vitro evidence to show that these compounds have potential against a range of different (potato pathogenic) fungi. This research links structural variation in SGAs to resistance against potato diseases and pests. Further research on the biosynthesis of plant defence compounds in different tissues, their toxicity, and the mechanisms for detoxification, can aid the effective use of such compounds to improve sustainability of our food production.


Farmers often rely on pesticides to protect their crops from disease and pests. However, these chemicals are harmful to the environment and more sustainable strategies are needed. This is particularly true for a disease known as the early blight of potato, which is primarily treated using fungicides that stop the fungal pathogen responsible for the infection (Alternaria solani) from growing. An alternative approach is to harness the natural defence systems that plants already have in place to protect themselves. Like humans, plants have an immune system which can detect and destroy specific pathogens. On top of this, they release defence compounds that are generally toxic to pests and microbes, stopping them from infiltrating and causing an infection. In 2021, a group of researchers discovered a wild relative of the potato, known as Solanum commersonii, with strong resistance to early blight disease. Here, Wolters et al. ­ including some of the researchers involved in the 2021 study ­ set out to find how this plant defends itself from the fungus A. solani. The team found that two closely linked genes are responsible for the resistant behaviour of S. commersonii, which both encode enzymes known as glycosyltransferases. Further experiments revealed that the enzymes protect S. commersonii from early blight disease by modifying steroidal glycoalkaloids, typical defence compounds found in potato and other plants from the same family. The glycosyltransferases alter glycoalkaloids in S. commersonii by adding a sugar group to a specific part of the compound called glycone. Wolters et al. found that the glycoalkaloids from S. commersonii were able to slow the growth of other fungal pathogens that harm potatoes when tested in the laboratory. They also made plants resistant to another common destroyer of crops, the Colorado potato beetle. These findings could help farmers breed potatoes and other crops that are more resistant to early blight disease and Colorado potato beetle, as well as potentially other fungi and pests. However, further experiments are needed to investigate how these glycone-modified glycoalkaloids affect humans, and how variants of glycoalkaloids are produced and degraded in different parts of the plants. Acquiring this knowledge will help to employ these defence compounds in a safe and effective manner.


Asunto(s)
Escarabajos , Solanum tuberosum , Animales , Fitomejoramiento , Alternaria , Esteroides
6.
Science ; 381(6660): 891-897, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37616352

RESUMEN

Plant cell surface pattern recognition receptors (PRRs) and intracellular immune receptors cooperate to provide immunity to microbial infection. Both receptor families have coevolved at an accelerated rate, but the evolution and diversification of PRRs is poorly understood. We have isolated potato surface receptor Pep-13 receptor unit (PERU) that senses Pep-13, a conserved immunogenic peptide pattern from plant pathogenic Phytophthora species. PERU, a leucine-rich repeat receptor kinase, is a bona fide PRR that binds Pep-13 and enhances immunity to Phytophthora infestans infection. Diversification in ligand binding specificities of PERU can be traced to sympatric wild tuber-bearing Solanum populations in the Central Andes. Our study reveals the evolution of cell surface immune receptor alleles in wild potato populations that recognize ligand variants not recognized by others.


Asunto(s)
Phytophthora infestans , Inmunidad de la Planta , Receptores Inmunológicos , Solanum tuberosum , Ligandos , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/inmunología , Solanum tuberosum/microbiología
7.
PLoS One ; 18(8): e0289984, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37590309

RESUMEN

Thrips are a serious pest in many crops. In onion cultivation, Thrips tabaci is the most important, but not the only thrips species causing damage. We investigated which thrips species affects onion and related species worldwide, how much genetic variation there is within T. tabaci populations, and how this evolves. Furthermore, we determined the reproductive mode and the correlation between the genetic and geographic distances. Thrips samples from infested onions or related species were obtained from 14 different locations worldwide. Species and haplotypes were determined through DNA barcoding with the mitochondrial Cytochrome Oxidase subunit I (COI) gene. Thrips tabaci was the most commonly observed species, but Scirtothrips dorsalis, Thrips palmi, Frankliniella intonsa, Frankliniella occidentalis and Frankliniella tenuicornis were also found, especially at the beginning of the growing seasons and depending on the location. The Nei's genetic distance within T. tabaci was less than 5% and the haplotypes were clustered into two phylogenetic groups, each linked to a specific mode of reproduction, thelytokous or arrhenotokous. Thelytokous thrips were more common and more widely distributed than arrhenotokous thrips. A high percentage of heteroplasmy was detected in the arrhenotokous group. Heteroplasmic thrips were only found in populations where thelytokous and arrhenotokous were present in sympatry. Some T. tabaci haplotypes were present in high frequency at several sampled locations. No correlation was found between the genetic and geographic distances, which points to anthropic activities spreading thrips haplotypes throughout the world.


Asunto(s)
Allium , Thysanoptera , Animales , Thysanoptera/genética , Filogenia , Cebollas , Heteroplasmia
8.
Mol Plant ; 15(3): 520-536, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35026436

RESUMEN

Cultivated potato is a clonally propagated autotetraploid species with a highly heterogeneous genome. Phased assemblies of six cultivars including two chromosome-scale phased genome assemblies revealed extensive allelic diversity, including altered coding and transcript sequences, preferential allele expression, and structural variation that collectively result in a highly complex transcriptome and predicted proteome, which are distributed across the homologous chromosomes. Wild species contribute to the extensive allelic diversity in tetraploid cultivars, demonstrating ancestral introgressions predating modern breeding efforts. As a clonally propagated autotetraploid that undergoes limited meiosis, dysfunctional and deleterious alleles are not purged in tetraploid potato. Nearly a quarter of the loci bore mutations are predicted to have a high negative impact on protein function, complicating breeder's efforts to reduce genetic load. The StCDF1 locus controls maturity, and analysis of six tetraploid genomes revealed that 12 allelic variants of StCDF1 are correlated with maturity in a dosage-dependent manner. Knowledge of the complexity of the tetraploid potato genome with its rampant structural variation and embedded deleterious and dysfunctional alleles will be key not only to implementing precision breeding of tetraploid cultivars but also to the construction of homozygous, diploid potato germplasm containing favorable alleles to capitalize on heterosis in F1 hybrids.


Asunto(s)
Solanum tuberosum , Tetraploidía , Alelos , Cromosomas , Fitomejoramiento , Proteoma/genética , Solanum tuberosum/genética , Transcriptoma/genética
9.
Nat Commun ; 12(1): 4141, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34230471

RESUMEN

Genetic gain in potato is hampered by the heterozygous tetraploid genome of cultivated potato. Converting potato into a diploid inbred-line based F1-hybrid crop provides a promising route towards increased genetic gain. The introduction of a dominant S-locus inhibitor (Sli) gene into diploid potato germplasm allows efficient generation of self-fertilized seeds and thus the development of potato inbred lines. Little is known about the structure and function of the Sli locus. Here we describe the mapping of Sli to a 12.6 kb interval on chromosome 12 using a recombinant screen approach. One of two candidate genes present in this interval shows a unique sequence that is exclusively present in self-compatible lines. We describe an expression vector that converts self-incompatible genotypes into self-compatible and a CRISPR-Cas9 vector that converts SC genotypes into SI. The Sli gene encodes an F-box protein that is specifically expressed in pollen from self-compatible plants. A 533 bp insertion in the promotor of that gene leads to a gain of function mutation, which overcomes self-pollen rejection.


Asunto(s)
Genes de Plantas/genética , Fitomejoramiento , Proteínas de Plantas/genética , Solanum tuberosum/genética , Sistemas CRISPR-Cas , Mapeo Cromosómico , Cromosomas de las Plantas , Diploidia , Genotipo , Heterocigoto , Magnoliopsida , Polen/genética , Semillas/metabolismo , Autoincompatibilidad en las Plantas con Flores/genética
10.
Theor Appl Genet ; 134(8): 2443-2457, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34032878

RESUMEN

KEY MESSAGE: In polyploids, linkage mapping is carried out using genotyping with discrete dosage scores. Here, we use probabilistic genotypes and we validate it for the construction of polyploid linkage maps. Marker genotypes are generally called as discrete values: homozygous versus heterozygous in the case of diploids, or an integer allele dosage in the case of polyploids. Software for linkage map construction and/or QTL analysis usually relies on such discrete genotypes. However, it may not always be possible, or desirable, to assign definite values to genotype observations in the presence of uncertainty in the genotype calling. Here, we present an approach that uses probabilistic marker dosages for linkage map construction in polyploids. We compare our method to an approach based on discrete dosages, using simulated SNP array and sequence reads data with varying levels of data quality. We validate our approach using experimental data from a potato (Solanum tuberosum L.) SNP array applied to an F1 mapping population. In comparison to the approach based on discrete dosages, we mapped an additional 562 markers. All but three of these were mapped to the expected chromosome and marker position. For the remaining three markers, no physical position was known. The use of dosage probabilities is of particular relevance for map construction in polyploids using sequencing data, as these often result in a higher level of uncertainty regarding allele dosage.


Asunto(s)
Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Poliploidía , Sitios de Carácter Cuantitativo , Solanum tuberosum/genética , Simulación por Computador , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple , Solanum tuberosum/crecimiento & desarrollo
11.
BMC Plant Biol ; 21(1): 198, 2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33894758

RESUMEN

BACKGROUND: Scientific literature carries a wealth of information crucial for research, but only a fraction of it is present as structured information in databases and therefore can be analyzed using traditional data analysis tools. Natural language processing (NLP) is often and successfully employed to support humans by distilling relevant information from large corpora of free text and structuring it in a way that lends itself to further computational analyses. For this pilot, we developed a pipeline that uses NLP on biological literature to produce knowledge networks. We focused on the flesh color of potato, a well-studied trait with known associations, and we investigated whether these knowledge networks can assist us in formulating new hypotheses on the underlying biological processes. RESULTS: We trained an NLP model based on a manually annotated corpus of 34 full-text potato articles, to recognize relevant biological entities and relationships between them in text (genes, proteins, metabolites and traits). This model detected the number of biological entities with a precision of 97.65% and a recall of 88.91% on the training set. We conducted a time series analysis on 4023 PubMed abstract of plant genetics-based articles which focus on 4 major Solanaceous crops (tomato, potato, eggplant and capsicum), to determine that the networks contained both previously known and contemporaneously unknown leads to subsequently discovered biological phenomena relating to flesh color. A novel time-based analysis of these networks indicates a connection between our trait and a candidate gene (zeaxanthin epoxidase) already two years prior to explicit statements of that connection in the literature. CONCLUSIONS: Our time-based analysis indicates that network-assisted hypothesis generation shows promise for knowledge discovery, data integration and hypothesis generation in scientific research.


Asunto(s)
Minería de Datos , Procesamiento de Lenguaje Natural , Tubérculos de la Planta/fisiología , Solanum tuberosum/fisiología , Color , Pigmentos Biológicos
12.
Plant J ; 107(1): 182-197, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33882622

RESUMEN

Phytophthora infestans is a pathogenic oomycete that causes the infamous potato late blight disease. Resistance (R) genes from diverse Solanum species encode intracellular receptors that trigger effective defense responses upon the recognition of cognate RXLR avirulence (Avr) effector proteins. To deploy these R genes in a durable fashion in agriculture, we need to understand the mechanism of effector recognition and the way the pathogen evades recognition. In this study, we cloned 16 allelic variants of the Rpi-chc1 gene from Solanum chacoense and other Solanum species, and identified the cognate P. infestans RXLR effectors. These tools were used to study effector recognition and co-evolution. Functional and non-functional alleles of Rpi-chc1 encode coiled-coil nucleotide-binding leucine-rich repeat (CNL) proteins, being the first described representatives of the CNL16 family. These alleles have distinct patterns of RXLR effector recognition. While Rpi-chc1.1 recognized multiple PexRD12 (Avrchc1.1) proteins, Rpi-chc1.2 recognized multiple PexRD31 (Avrchc1.2) proteins, both belonging to the PexRD12/31 effector superfamily. Domain swaps between Rpi-chc1.1 and Rpi-chc1.2 revealed that overlapping subdomains in the leucine-rich repeat (LRR) domain are responsible for the difference in effector recognition. This study showed that Rpi-chc1.1 and Rpi-chc1.2 evolved to recognize distinct members of the same PexRD12/31 effector family via the LRR domain. The biased distribution of polymorphisms suggests that exchange of LRRs during host-pathogen co-evolution can lead to novel recognition specificities. These insights will guide future strategies to breed durable resistant varieties.


Asunto(s)
Proteínas NLR/metabolismo , Phytophthora infestans/patogenicidad , Enfermedades de las Plantas/genética , Proteínas de Plantas/metabolismo , Solanum/genética , Clonación Molecular , Resistencia a la Enfermedad/genética , Variación Genética , Interacciones Huésped-Patógeno/fisiología , Proteínas NLR/química , Proteínas NLR/genética , Filogenia , Phytophthora infestans/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Dominios Proteicos , Solanum/microbiología
13.
Plant J ; 105(4): 855-869, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33220113

RESUMEN

Plants regulate their reproductive cycles under the influence of environmental cues, such as day length, temperature and water availability. In Solanum tuberosum (potato), vegetative reproduction via tuberization is known to be regulated by photoperiod, in a very similar way to flowering. The central clock output transcription factor CYCLING DOF FACTOR 1 (StCDF1) was shown to regulate tuberization. We now show that StCDF1, together with a long non-coding RNA (lncRNA) counterpart, named StFLORE, also regulates water loss through affecting stomatal growth and diurnal opening. Both natural and CRISPR-Cas9 mutations in the StFLORE transcript produce plants with increased sensitivity to water-limiting conditions. Conversely, elevated expression of StFLORE, both by the overexpression of StFLORE or by the downregulation of StCDF1, results in an increased tolerance to drought through reducing water loss. Although StFLORE appears to act as a natural antisense transcript, it is in turn regulated by the StCDF1 transcription factor. We further show that StCDF1 is a non-redundant regulator of tuberization that affects the expression of two other members of the potato StCDF gene family, as well as StCO genes, through binding to a canonical sequence motif. Taken together, we demonstrate that the StCDF1-StFLORE locus is important for vegetative reproduction and water homeostasis, both of which are important traits for potato plant breeding.


Asunto(s)
Proteínas de Plantas/metabolismo , Tubérculos de la Planta/crecimiento & desarrollo , ARN Largo no Codificante/metabolismo , ARN de Planta/metabolismo , Solanum tuberosum/metabolismo , Factores de Transcripción/metabolismo , Adaptación Fisiológica , Deshidratación , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Tubérculos de la Planta/metabolismo , Tubérculos de la Planta/fisiología , Regiones Promotoras Genéticas , ARN sin Sentido/metabolismo , ARN sin Sentido/fisiología , ARN Largo no Codificante/genética , ARN Largo no Codificante/fisiología , ARN de Planta/genética , ARN de Planta/fisiología , Solanum tuberosum/genética , Solanum tuberosum/crecimiento & desarrollo , Solanum tuberosum/fisiología , Factores de Transcripción/genética , Factores de Transcripción/fisiología
14.
Nat Genet ; 52(10): 1018-1023, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32989320

RESUMEN

Potato (Solanum tuberosum L.) is the most important tuber crop worldwide. Efforts are underway to transform the crop from a clonally propagated tetraploid into a seed-propagated, inbred-line-based hybrid, but this process requires a better understanding of potato genome. Here, we report the 1.67-Gb haplotype-resolved assembly of a diploid potato, RH89-039-16, using a combination of multiple sequencing strategies, including circular consensus sequencing. Comparison of the two haplotypes revealed ~2.1% intragenomic diversity, including 22,134 predicted deleterious mutations in 10,642 annotated genes. In 20,583 pairs of allelic genes, 16.6% and 30.8% exhibited differential expression and methylation between alleles, respectively. Deleterious mutations and differentially expressed alleles were dispersed throughout both haplotypes, complicating strategies to eradicate deleterious alleles or stack beneficial alleles via meiotic recombination. This study offers a holistic view of the genome organization of a clonally propagated diploid species and provides insights into technological evolution in resolving complex genomes.


Asunto(s)
Genoma de Planta/genética , Haplotipos/genética , Anotación de Secuencia Molecular , Solanum tuberosum/genética , Alelos , Diploidia , Heterocigoto , Tetraploidía
15.
Theor Appl Genet ; 133(12): 3419-3439, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32918590

RESUMEN

KEY MESSAGE: Two novel major effect loci (Sen4 and Sen5) and several minor effect QTLs for potato wart disease resistance have been mapped. The importance of minor effect loci to bring full resistance to wart disease was investigated. Using the newly identified and known wart disease resistances, a panel of potato breeding germplasm and Solanum wild species was screened. This provided a state-of-the-art "hitch-hikers-guide" of complementary wart disease resistance sources. Potato wart disease, caused by the obligate biotrophic soil-born fungus Synchytrium endobioticum, is the most important quarantine disease of potato. Because of its huge impact on yield, the lack of chemical control and the formation of resting spores with long viability, breeding for resistant varieties combined with strict quarantine measures are the only way to efficiently and durably manage the disease. In this study, we set out to make an inventory of the different resistance sources. Using a Genome-Wide Association Study (GWAS) in the potato breeding genepool, we identified Sen4, associated with pathotypes 2, 6 and 18 resistance. Associated SNPs mapped to the south arm of chromosome 12 and were validated to be linked to resistance in one full-sib population. Also, a bulked segregant analysis combined with a Comparative Subsequence Sets Analysis (CoSSA) resulted in the identification of Sen5, associated with pathotypes 2, 6 and 18 resistance, on the south arm of chromosome 5. In addition to these two major effect loci, the GWAS and CoSSA allowed the identification of several quantitative trait loci necessary to bring full resistance to certain pathotypes. Panels of varieties and Solanum accessions were screened for the presence of Sen1, Sen2, Sen3, Sen4 and Sen5. Combined with pedigree analysis, we could trace back some of these genes to the ancestral resistance donors. This analysis revealed complementary resistance sources and allows elimination of redundancy in wart resistance breeding programs.


Asunto(s)
Cromosomas de las Plantas/genética , Quitridiomicetos/fisiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Sitios de Carácter Cuantitativo , Solanum tuberosum/genética , Mapeo Cromosómico/métodos , Resistencia a la Enfermedad/inmunología , Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Solanum tuberosum/inmunología , Solanum tuberosum/microbiología
16.
G3 (Bethesda) ; 10(10): 3489-3495, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32759330

RESUMEN

With the rapid expansion of the application of genomics and sequencing in plant breeding, there is a constant drive for better reference genomes. In potato (Solanum tuberosum), the third largest food crop in the world, the related species S. phureja, designated "DM", has been used as the most popular reference genome for the last 10 years. Here, we introduce the de novo sequenced genome of Solyntus as the next standard reference in potato genome studies. A true Solanum tuberosum made up of 116 contigs that is also highly homozygous, diploid, vigorous and self-compatible, Solyntus provides a more direct and contiguous reference then ever before available. It was constructed by sequencing with state-of-the-art long and short read technology and assembled with Canu. The 116 contigs were assembled into scaffolds to form each pseudochromosome, with three contigs to 17 contigs per chromosome. This assembly contains 93.7% of the single-copy gene orthologs from the Solanaceae set and has an N50 of 63.7 Mbp. The genome and related files can be found at https://www.plantbreeding.wur.nl/Solyntus/ With the release of this research line and its draft genome we anticipate many exciting developments in (diploid) potato research.


Asunto(s)
Solanum tuberosum , Solanum , Secuencia de Bases , Genoma de Planta , Fitomejoramiento , Solanum/genética , Solanum tuberosum/genética
17.
mBio ; 11(3)2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32605983

RESUMEN

Plants deploy cell surface receptors known as pattern-recognition receptors (PRRs) that recognize non-self molecules from pathogens and microbes to defend against invaders. PRRs typically recognize microbe-associated molecular patterns (MAMPs) that are usually widely conserved, some even across kingdoms. Here, we report an oomycete-specific family of small secreted cysteine-rich (SCR) proteins that displays divergent patterns of sequence variation in the Irish potato famine pathogen Phytophthora infestans A subclass that includes the conserved effector PcF from Phytophthora cactorum activates immunity in a wide range of plant species. In contrast, the more diverse SCR74 subclass is specific to P. infestans and tends to trigger immune responses only in a limited number of wild potato genotypes. The SCR74 response was recently mapped to a G-type lectin receptor kinase (G-LecRK) locus in the wild potato Solanum microdontum subsp. gigantophyllum. The G-LecRK locus displays a high diversity in Solanum host species compared to other solanaceous plants. We propose that the diversification of the SCR74 proteins in P. infestans is driven by a fast coevolutionary arms race with cell surface immune receptors in wild potato, which contrasts the presumed slower dynamics between conserved apoplastic effectors and PRRs. Understanding the molecular determinants of plant immune responses to these divergent molecular patterns in oomycetes is expected to contribute to deploying multiple layers of disease resistance in crop plants.IMPORTANCE Immune receptors at the plant cell surface can recognize invading microbes. The perceived microbial molecules are typically widely conserved and therefore the matching surface receptors can detect a broad spectrum of pathogens. Here we describe a family of Phytophthora small extracellular proteins that consists of conserved subfamilies that are widely recognized by solanaceous plants. Remarkably, one subclass of SCR74 proteins is highly diverse, restricted to the late blight pathogen Phytophthora infestans and is specifically detected in wild potato plants. The diversification of this subfamily exhibits signatures of a coevolutionary arms race with surface receptors in potato. Insights into the molecular interaction between these potato-specific receptors and the recognized Phytophthora proteins are expected to contribute to disease resistance breeding in potato.


Asunto(s)
Phytophthora infestans/genética , Enfermedades de las Plantas/inmunología , Receptores de Reconocimiento de Patrones/inmunología , Solanum tuberosum/inmunología , Resistencia a la Enfermedad , Evolución Molecular , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Filogenia , Phytophthora infestans/patogenicidad , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Receptores de Reconocimiento de Patrones/genética , Solanum tuberosum/genética
18.
New Phytol ; 227(4): 1264-1276, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32285454

RESUMEN

The identification of immune receptors in crop plants is time-consuming but important for disease control. Previously, resistance gene enrichment sequencing (RenSeq) was developed to accelerate mapping of nucleotide-binding domain and leucine-rich repeat containing (NLR) genes. However, resistances mediated by pattern recognition receptors (PRRs) remain less utilized. Here, our pipeline shows accelerated mapping of PRRs. Effectoromics leads to precise identification of plants with target PRRs, and subsequent RLP/K enrichment sequencing (RLP/KSeq) leads to detection of informative single nucleotide polymorphisms that are linked to the trait. Using Phytophthora infestans as a model, we identified Solanum microdontum plants that recognize the apoplastic effectors INF1 or SCR74. RLP/KSeq in a segregating Solanum population confirmed the localization of the INF1 receptor on chromosome 12, and led to the rapid mapping of the response to SCR74 to chromosome 9. By using markers obtained from RLP/KSeq in conjunction with additional markers, we fine-mapped the SCR74 receptor to a 43-kbp G-LecRK locus. Our findings show that RLP/KSeq enables rapid mapping of PRRs and is especially beneficial for crop plants with large and complex genomes. This work will enable the elucidation and characterization of the nonNLR plant immune receptors and ultimately facilitate informed resistance breeding.


Asunto(s)
Phytophthora infestans , Solanum , Secuencia de Aminoácidos , Fitomejoramiento , Enfermedades de las Plantas/genética , Receptores de Reconocimiento de Patrones
19.
Theor Appl Genet ; 133(6): 1859-1871, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32043234

RESUMEN

KEY MESSAGE: A Genome-Wide Association Study using 330 commercial potato varieties identified haplotype specific SNP markers associated with pathotype 1(D1) wart disease resistance. Synchytrium endobioticum is a soilborne obligate biotrophic fungus responsible for wart disease. Growing resistant varieties is the most effective way to manage the disease. This paper addresses the challenge to apply molecular markers in potato breeding. Although markers linked to Sen1 were published before, the identification of haplotype-specific single-nucleotide polymorphisms may result in marker assays with high diagnostic value. To identify hs-SNP markers, we performed a genome-wide association study (GWAS) in a panel of 330 potato varieties representative of the commercial potato gene pool. SNP markers significantly associated with pathotype 1 resistance were identified on chromosome 11, at the position of the previously identified Sen1 locus. Haplotype specificity of the SNP markers was examined through the analysis of false positives and false negatives and validated in two independent full-sib populations. This paper illustrates why it is not always feasible to design markers without false positives and false negatives for marker-assisted selection. In the case of Sen1, founders could not be traced because of a lack of identity by descent and because of the decay of linkage disequilibrium between Sen1 and flanking SNP markers. Sen1 appeared to be the main source of pathotype 1 resistance in potato varieties, but it does not explain all the resistance observed. Recombination and introgression breeding may have introduced new, albeit rare haplotypes involved in pathotype 1 resistance. The GWAS approach, in such case, is instrumental to identify SNPs with the best possible diagnostic value for marker-assisted breeding.


Asunto(s)
Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Solanum tuberosum/genética , Cromosomas de las Plantas , Quitridiomicetos/patogenicidad , Genes de Plantas , Estudios de Asociación Genética , Marcadores Genéticos , Haplotipos , Desequilibrio de Ligamiento , Repeticiones de Microsatélite , Fenotipo , Sitios de Carácter Cuantitativo , Solanum tuberosum/microbiología
20.
Planta ; 251(2): 45, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31915930

RESUMEN

MAIN CONCLUSION: Adaptation of the xylem under dehydration to smaller sized vessels and the increase in xylem density per stem area facilitate water transport during water-limiting conditions, and this has implications for assimilate transport during drought. The potato stem is the communication and transport channel between the assimilate-exporting source leaves and the terminal sink tissues of the plant. During environmental stress conditions like water scarcity, which adversely affect the performance (canopy growth and tuber yield) of the potato plant, the response of stem tissues is essential, however, still understudied. In this study, we investigated the response of the stem tissues of cultivated potato grown in the greenhouse to dehydration using a multidisciplinary approach including physiological, biochemical, morphological, microscopic, and magnetic resonance imaging techniques. We observed the most significant effects of water limitation in the lower stem regions of plants. The light microscopy analysis of the potato stem sections revealed that plants exposed to this particular dehydration stress have higher total xylem density per unit area than control plants. This increase in the total xylem density was accompanied by an increase in the number of narrow-diameter xylem vessels and a decrease in the number of large-diameter xylem vessels. Our MRI approach revealed a diurnal rhythm of xylem flux between day and night, with a reduction in xylem flux that is linked to dehydration sensitivity. We also observed that sink strength was the main driver of assimilate transport through the stem in our data set. These findings may present potential breeding targets for drought tolerance in potato.


Asunto(s)
Solanum tuberosum/metabolismo , Solanum tuberosum/fisiología , Xilema/metabolismo , Xilema/fisiología , Adaptación Fisiológica/fisiología , Transporte Biológico/fisiología , Sequías , Imagen por Resonancia Magnética , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Transpiración de Plantas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA