Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomolecules ; 13(1)2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36671479

RESUMEN

Vertebral compression fractures are typical of osteoporosis and their treatment can require the injection of a cement through a minimally invasive procedure to restore vertebral body height. This study reports the development of an injectable calcium sulphate-based composite cement able to stimulate bone regeneration while inhibiting osteoclast bone resorption. To this aim, different types of strontium-containing mesoporous glass particles (Sr-MBG) were added to calcium sulphate powder to impart a pro-osteogenic effect, and the influence of their size and textural features on the cement properties was investigated. Anti-osteoclastogenic properties were conferred by incorporating into poly(lactic-co-glycolic)acid (PLGA) nanoparticles, a recombinant protein able to inhibit osteoclast activity (i.e., ICOS-Fc). Radiopaque zirconia nanoparticles (ZrO2) were also added to the formulation to visualize the cement injection under fluoroscopy. The measured cement setting times were suitable for the clinical practice, and static mechanical testing determined a compressive strength of ca. 8 MPa, comparable to that of human vertebral bodies. In vitro release experiments indicated a sustained release of ICOS-Fc and Sr2+ ions up to 28 days. Overall, the developed cement is promising for the treatment of vertebral compression fractures and has the potential to stimulate bone regeneration while releasing a biomolecule able to limit bone resorption.


Asunto(s)
Resorción Ósea , Fracturas por Compresión , Fracturas de la Columna Vertebral , Humanos , Fracturas por Compresión/tratamiento farmacológico , Fracturas de la Columna Vertebral/tratamiento farmacológico , Sulfato de Calcio , Cementos para Huesos/farmacología , Cementos para Huesos/uso terapéutico , Proteína Coestimuladora de Linfocitos T Inducibles
2.
Int J Mol Sci ; 20(3)2019 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-30744005

RESUMEN

Achieving the stable osteointegration of prosthetic implants is one of the great challenges of modern orthopedic surgery. The fixation of ceramic acetabular cups of hip joint prostheses is usually achieved using a metal shell provided with screws or pegs that penetrate into the host pelvic bone. The deposition of bioactive coatings on the implant surface to be put in contact with bone could be a valuable strategy to promote a more "physiological" osteointegration. In this work, bioactive glass porous coatings were manufactured on the top of alumina/zirconia composite implants by two different methods, i.e., sponge replication and laser cladding. The coated samples underwent immersion studies in Kokubo's simulated body fluid (SBF) to assess in vitro bioactivity and were found to exhibit an excellent hydroxyapatite-forming ability, which is key to allow bonding to bone. Biological tests using mesenchymal stem and osteoblast-like cells revealed the good biocompatibility of both types of materials. Furthermore, a higher level of mineralization was induced by the sponge-replicated coatings at 10 days. Overall, these results are highly promising and encourage further research on these materials.


Asunto(s)
Óxido de Aluminio , Materiales Biocompatibles Revestidos , Vidrio , Prótesis e Implantes , Circonio , Líquidos Corporales , Línea Celular , Humanos , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Porosidad , Propiedades de Superficie
3.
Acta Biomater ; 44: 97-109, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27521494

RESUMEN

UNLABELLED: The osseointegration of dental implants and their consequent long-term success is guaranteed by the presence, in the extraction site, of healthy and sufficient alveolar bone. Bone deficiencies may be the result of extraction traumas, periodontal disease and infection. In these cases, placement of titanium implants is contraindicated until a vertical bone augmentation is obtained. This goal is achieved using bone graft materials, which should simulate extracellular matrix (ECM), in order to promote osteoblast proliferation and fill the void, maintaining the space without collapsing until the new bone is formed. In this work, we design, develop and characterize a novel, moldable chitosan-pectin hydrogel reinforced by biphasic calcium phosphate particles with size in the range of 100-300µm. The polysaccharide nature of the hydrogel mimics the ECM of natural bone, and the ceramic particles promote high osteoblast proliferation, assessed by Scanning Electron Microscopy analysis. Swelling properties allow significant adsorption of water solution (up to 200% of solution content) so that the bone defect space can be filled by the material in an in vivo scenario. The incorporation of ceramic particles makes the material stable at different pH and increases the compressive elastic modulus, toughness and ultimate tensile strength. Furthermore, cell studies with SAOS-2 human osteoblastic cell line show high cell proliferation and adhesion already after 72h, and the presence of ceramic particles increases the expression of alkaline phosphatase activity after 1week. These results suggest a great potential of the developed moldable biomaterials for the regeneration of the alveolar bone. STATEMENT OF SIGNIFICANCE: The positive fate of a surgical procedure involving the insertion of a titanium screw still depends on the quality and quantity of alveolar bone which is present in the extraction site. Available materials are basically hard scaffold materials with un-predictable behavior in different condition and difficult shaping properties. In this work we developed a novel pectin-chitosan hydrogel reinforced with ceramic particles. Polysaccharides simulate the extracellular matrix of natural bone and the extensive in vitro cells culture study allows to assess that the incorporation of the ceramic particles promote a pro-osteogenic response. Shape control, easy adaption of the extraction site, predictable behavior in different environment condition, swelling properties and an anti-inflammatory response are the significant characteristics of the developed biomaterial.


Asunto(s)
Proceso Alveolar/fisiología , Materiales Biocompatibles/farmacología , Regeneración Ósea/efectos de los fármacos , Cerámica/farmacología , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacología , Proceso Alveolar/efectos de los fármacos , Animales , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quitosano/química , Fuerza Compresiva , Humanos , Concentración de Iones de Hidrógeno , Inflamación/patología , Macrófagos/efectos de los fármacos , Ratones , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Pectinas/química , Espectroscopía Infrarroja por Transformada de Fourier , Estrés Mecánico , Andamios del Tejido/química , Agua/química , Microtomografía por Rayos X
4.
Mater Sci Eng C Mater Biol Appl ; 68: 701-715, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27524071

RESUMEN

Periprosthetic infection is a consequence of implant insertion procedures and strategies for its prevention involve either an increase in the rate of new bone formation or the release of antibiotics such as vancomycin. In this work we combined both strategies and developed a novel, multifunctional three-dimensional porous scaffold that was produced using hydroxyapatite (HA) and ß-tricalcium phosphate (ß-TCP), coupled with a pectin (PEC)-chitosan (CHIT) polyelectrolyte (PEI), and loaded with vancomycin (VCA). By this approach, a controlled vancomycin release was achieved and serial bacterial dilution test demonstrated that, after 1week, the engineered construct still inhibits the bacterial growth. Degradation tests show an excellent behavior in a physiological and acidic environment (<10% of mass loss). Furthermore, the PEI coating shows an anti-inflammatory response, and good cell proliferation and migration were demonstrated in vitro using osteoblast SAOS-2 cell line. This new engineered construct exhibits excellent properties both as an antibacterial material and as a stimulator of bone formation, which makes it a good candidate to contrast periprosthetic infection.


Asunto(s)
Implantes Experimentales/microbiología , Osteoblastos/microbiología , Infecciones Estafilocócicas/prevención & control , Staphylococcus epidermidis/crecimiento & desarrollo , Andamios del Tejido/química , Vancomicina/química , Animales , Fosfatos de Calcio/química , Línea Celular , Quitosano/química , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacología , Durapatita/química , Ratones , Osteoblastos/metabolismo , Pectinas/química , Porosidad , Vancomicina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA