Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Animal ; 17(6): 100815, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37167820

RESUMEN

The use of alternative feed ingredients from the Agro-industry could be an efficient tool to improve the sustainability of dairy cow production. Since the richness in polyphenols, olive oil pomace (OOP), produced during olive oil milling, seems a promising by-product to ameliorate milk's nutritional value. The aim of this study was to test the use of OOP produced by means of a new technology (biphasic with stone deprivation) in dairy cow feeding strategy to evaluate the effect on animal performances, rumen microbiota, biohydrogenation processes and milk quality by a multidisciplinary approach. Forty multiparous Italian-Friesian dairy cows, at middle lactation, were randomly allotted into two homogenous groups and fed respectively a commercial diet (CON) and the experimental diet (OOPD) obtained by adding OOP to CON as partial replacement of maize silage. The two diets were formulated to be isoproteic and isoenergetic. The same diets were tested also in an in vitro trial aimed to evaluate their rumen degradability (% DEG). The dietary supplementation with OOP did not affect DM intake, rumen % DEG and milk production. The milk's nutritional quality was improved by increasing several important functional fatty acids (FAs; i.e., linoleic acid, conjugated linoleic acid, oleic acid, vaccenic acid). This finding was related to a decrease in rumen liquor biohydrogenation rate of unsaturated FAs. The stochiometric relation between volatile FA production in the rumen and methanogenesis suggested that OOP lowers the methane potential production (CON = 0.050 mol/L vs OOPD = 0.024 mol/L, SEM = 0.005, P = 0.0011). Rumen microbiota and fungi community did not be strongly altered by OOP dietary inclusion because few bacteria were affected at the genus level only. Particularly, Acetobacter, Prevotellaceae_UCG-004, Prevotellaceae_UCG-001, Eubacterium coprostanoligenes, Lachnospira, Acetitomaulatum, Lachnospiraceae_NK3A20 group were more abundant with OOPD condition (P < 0.05). Data reported in this study confirm that the use of OOP in dairy cow feeding can be an interesting strategy to improve milk nutritional quality increasing functional FA content without compromising the rumen degradability of the diet or causing strong perturbation of rumen ecosystem and maintaining animal performances.


Asunto(s)
Microbiota , Leche , Animales , Bovinos , Femenino , Alimentación Animal/análisis , Dieta/veterinaria , Ácidos Grasos/metabolismo , Fermentación , Lactancia , Aceite de Oliva/metabolismo , Rumen/metabolismo , Ensilaje/análisis
2.
J Dairy Sci ; 98(2): 1145-56, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25434333

RESUMEN

The aim of the study was to evaluate milk fatty acid (FA) profile, animal performance, and rumen microbial population in response to diets containing soybean oil supplemented or not with chestnut and quebracho tannins in dairy ewes. Eighteen Comisana ewes at 122±6 d in milking were allotted into 3 experimental groups. Diets were characterized by chopped grass hay administered ad libitum and by 800 g/head and day of 3 experimental concentrates containing 84.5 g of soybean oil/kg of dry matter (DM) and 52.8 g/kg of DM of bentonite (control diet), chestnut tannin extract (CHT diet), or quebracho tannin extract (QUE diet). The trial lasted 4 wk. Milk yield was recorded daily, and milk composition and blood parameters were analyzed weekly. At the end of the experiment, samples of rumen fluid were collected to analyze pH, volatile fatty acid profile, and the relative proportions of Butyrivibrio fibrisolvens and Butyrivibrio proteoclasticus in the rumen microbial population. Hepatic functionality, milk yield, and gross composition were not affected by tannin extracts, whereas milk FA composition was characterized by significant changes in the concentration of linoleic acid (CHT +2.77% and QUE +9.23%), vaccenic acid (CHT +7.07% and QUE +13.88%), rumenic acid (CHT -1.88% and QUE +24.24%), stearic acid (CHT + 8.71% and QUE -11.45%), and saturated fatty acids (CHT -0.47% and QUE -3.38%). These differences were probably due to the ability of condensed versus hydrolyzable tannins to interfere with rumen microbial metabolism, as indirectly confirmed by changes in the relative proportions of B. fibrisolvens and B. proteoclasticus populations and by changes in the molar proportions of volatile fatty acids. The effect of the CHT diet on the milk FA profile and microbial species considered in this trial was intermediate between that of QUE and the control diet, suggesting a differential effect of condensed and hydrolyzable tannins on rumen microbes. Compared with control animals, the presence of B. fibrisolvens increased about 3 times in ewes fed CHT and about 5 times in animals fed QUE. In contrast, the abundance of B. proteoclasticus decreased about 5- and 15-fold in rumen liquor of ewes fed CHT and QUE diets, respectively. The use of soybean oil and a practical dose of QUE or CHT extract in the diet of dairy ewes can be an efficient strategy to improve the nutritional quality of milk.


Asunto(s)
Ácidos Grasos/análisis , Ácido Linoleico/administración & dosificación , Leche/química , Rumen/microbiología , Ovinos/fisiología , Taninos/administración & dosificación , Animales , Butyrivibrio/aislamiento & purificación , Industria Lechera , Dieta/veterinaria , Suplementos Dietéticos , Digestión , Ácidos Grasos Volátiles/análisis , Femenino , Lactancia/fisiología , Valor Nutritivo , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Aceite de Soja/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA