Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Elife ; 122023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37751372

RESUMEN

Plants with innate disease and pest resistance can contribute to more sustainable agriculture. Natural defence compounds produced by plants have the potential to provide a general protective effect against pathogens and pests, but they are not a primary target in resistance breeding. Here, we identified a wild relative of potato, Solanum commersonii, that provides us with unique insight in the role of glycoalkaloids in plant immunity. We cloned two atypical resistance genes that provide resistance to Alternaria solani and Colorado potato beetle through the production of tetraose steroidal glycoalkaloids (SGA). Moreover, we provide in vitro evidence to show that these compounds have potential against a range of different (potato pathogenic) fungi. This research links structural variation in SGAs to resistance against potato diseases and pests. Further research on the biosynthesis of plant defence compounds in different tissues, their toxicity, and the mechanisms for detoxification, can aid the effective use of such compounds to improve sustainability of our food production.


Farmers often rely on pesticides to protect their crops from disease and pests. However, these chemicals are harmful to the environment and more sustainable strategies are needed. This is particularly true for a disease known as the early blight of potato, which is primarily treated using fungicides that stop the fungal pathogen responsible for the infection (Alternaria solani) from growing. An alternative approach is to harness the natural defence systems that plants already have in place to protect themselves. Like humans, plants have an immune system which can detect and destroy specific pathogens. On top of this, they release defence compounds that are generally toxic to pests and microbes, stopping them from infiltrating and causing an infection. In 2021, a group of researchers discovered a wild relative of the potato, known as Solanum commersonii, with strong resistance to early blight disease. Here, Wolters et al. ­ including some of the researchers involved in the 2021 study ­ set out to find how this plant defends itself from the fungus A. solani. The team found that two closely linked genes are responsible for the resistant behaviour of S. commersonii, which both encode enzymes known as glycosyltransferases. Further experiments revealed that the enzymes protect S. commersonii from early blight disease by modifying steroidal glycoalkaloids, typical defence compounds found in potato and other plants from the same family. The glycosyltransferases alter glycoalkaloids in S. commersonii by adding a sugar group to a specific part of the compound called glycone. Wolters et al. found that the glycoalkaloids from S. commersonii were able to slow the growth of other fungal pathogens that harm potatoes when tested in the laboratory. They also made plants resistant to another common destroyer of crops, the Colorado potato beetle. These findings could help farmers breed potatoes and other crops that are more resistant to early blight disease and Colorado potato beetle, as well as potentially other fungi and pests. However, further experiments are needed to investigate how these glycone-modified glycoalkaloids affect humans, and how variants of glycoalkaloids are produced and degraded in different parts of the plants. Acquiring this knowledge will help to employ these defence compounds in a safe and effective manner.


Asunto(s)
Escarabajos , Solanum tuberosum , Animales , Fitomejoramiento , Alternaria , Esteroides
2.
Science ; 381(6660): 891-897, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37616352

RESUMEN

Plant cell surface pattern recognition receptors (PRRs) and intracellular immune receptors cooperate to provide immunity to microbial infection. Both receptor families have coevolved at an accelerated rate, but the evolution and diversification of PRRs is poorly understood. We have isolated potato surface receptor Pep-13 receptor unit (PERU) that senses Pep-13, a conserved immunogenic peptide pattern from plant pathogenic Phytophthora species. PERU, a leucine-rich repeat receptor kinase, is a bona fide PRR that binds Pep-13 and enhances immunity to Phytophthora infestans infection. Diversification in ligand binding specificities of PERU can be traced to sympatric wild tuber-bearing Solanum populations in the Central Andes. Our study reveals the evolution of cell surface immune receptor alleles in wild potato populations that recognize ligand variants not recognized by others.


Asunto(s)
Phytophthora infestans , Inmunidad de la Planta , Receptores Inmunológicos , Solanum tuberosum , Ligandos , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/inmunología , Solanum tuberosum/microbiología
3.
Plant J ; 115(2): 398-413, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37021636

RESUMEN

The potato's most devastating disease is late blight, which is caused by Phytophthora infestans. Whereas various resistance (R) genes are known, most are typically defeated by this fast-evolving oomycete pathogen. However, the broad-spectrum and durable R8 is a vital gene resource for potato resistance breeding. To support an educated deployment of R8, we embarked on a study on the corresponding avirulence gene Avr8. We overexpressed Avr8 by transient and stable transformation, and found that Avr8 promotes colonization of P. infestans in Nicotiana benthamiana and potato, respectively. A yeast-two-hybrid (Y2H) screen showed that AVR8 interacts with a desumoylating isopeptidase (StDeSI2) of potato. We overexpressed DeSI2 and found that DeSI2 positively regulates resistance to P. infestans, while silencing StDeSI2 downregulated the expression of a set of defense-related genes. By using a specific proteasome inhibitor, we found that AVR8 destabilized StDeSI2 through the 26S proteasome and attenuated early PTI responses. Altogether, these results indicate that AVR8 manipulates desumoylation, which is a new strategy that adds to the plethora of mechanisms that Phytophthora exploits to modulate host immunity, and StDeSI2 provides a new target for durable resistance breeding against P. infestans in potato.


Asunto(s)
Phytophthora infestans , Solanum tuberosum , Fitomejoramiento , Inmunidad de la Planta , Solanum tuberosum/genética , Enfermedades de las Plantas
4.
Mol Plant ; 15(9): 1457-1469, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35915586

RESUMEN

Species of the genus Phytophthora, the plant killer, cause disease and reduce yields in many crop plants. Although many Resistance to Phytophthora infestans (Rpi) genes effective against potato late blight have been cloned, few have been cloned against other Phytophthora species. Most Rpi genes encode nucleotide-binding domain, leucine-rich repeat-containing (NLR) immune receptor proteins that recognize RXLR (Arg-X-Leu-Arg) effectors. However, whether NLR proteins can recognize RXLR effectors from multiple Phytophthora species has rarely been investigated. Here, we identified a new RXLR-WY effector AVRamr3 from P. infestans that is recognized by Rpi-amr3 from a wild Solanaceae species Solanum americanum. Rpi-amr3 associates with AVRamr3 in planta. AVRamr3 is broadly conserved in many different Phytophthora species, and the recognition of AVRamr3 homologs by Rpi-amr3 activates resistance against multiple Phytophthora pathogens, including the tobacco black shank disease and cacao black pod disease pathogens P. parasitica and P. palmivora. Rpi-amr3 is thus the first characterized resistance gene that acts against P. parasitica or P. palmivora. These findings suggest a novel path to redeploy known R genes against different important plant pathogens.


Asunto(s)
Phytophthora infestans , Solanum tuberosum , Solanum , Resistencia a la Enfermedad/genética , Genes de Plantas , Phytophthora infestans/metabolismo , Enfermedades de las Plantas/genética , Solanum/genética , Solanum tuberosum/genética
5.
Methods Mol Biol ; 2354: 303-313, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34448166

RESUMEN

Late blight in potato, caused by the oomycete Phytophthora infestans, is a devastating disease that significantly impacts potato production. For a proper understanding of disease development, it is important to understand the interaction between plant and pathogen at a molecular level. Like other pathogens, P. infestans secretes effector molecules, which can be recognized by receptors in the plant and trigger immunity. In addition, effectors from P. infestans have been identified to enhance disease development. Here, we describe an assay to investigate the role of effectors in virulence of P. infestans on potato. We combine agroinfiltration to transiently express effectors in potato with detached leaf assays to monitor disease development. This protocol makes it possible to conveniently quantify the effect of individual effectors on virulence of P. infestans. The identification of effectors with an important role in late blight development can help to design better strategies to control the disease.


Asunto(s)
Phytophthora infestans , Solanum tuberosum , Enfermedades de las Plantas , Hojas de la Planta , Plantas , Virulencia
6.
Methods Mol Biol ; 2354: 315-330, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34448167

RESUMEN

The identification, understanding, and deployment of immune receptors are crucial to achieve high-level and durable resistance for crops against pathogens. In potato, many R genes have been identified using map-based cloning strategies. However, this is a challenging and laborious task that involves the development of a high number of molecular markers for the initial mapping, and the screening of thousands of plants for fine mapping. Bulked segregant RNA-Seq (BSR-Seq) has proven to be an efficient technique for the mapping of resistance genes. The RNA from two bulks of plants with contrasting phenotypes is sequenced and analyzed to identify single-nucleotide polymorphism (SNPs) markers linked to the target gene. Subsequently, the SNP markers that are identified can be used to delimit the mapping interval. Additionally, we designed an in vitro recombinant screening strategy that is advantageous for analyzing a large number of plants, in terms of time, space, and cost. Tips and detailed protocols, including BSR-Seq, bioinformatic analysis, and recombinant screening, are provided in this chapter.


Asunto(s)
Solanum , Mapeo Cromosómico , Resistencia a la Enfermedad , Enfermedades de las Plantas/genética , Polimorfismo de Nucleótido Simple , RNA-Seq , Solanum/genética
7.
Nat Plants ; 7(2): 198-208, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33574576

RESUMEN

Late blight caused by Phytophthora infestans greatly constrains potato production. Many Resistance (R) genes were cloned from wild Solanum species and/or introduced into potato cultivars by breeding. However, individual R genes have been overcome by P. infestans evolution; durable resistance remains elusive. We positionally cloned a new R gene, Rpi-amr1, from Solanum americanum, that encodes an NRC helper-dependent CC-NLR protein. Rpi-amr1 confers resistance in potato to all 19 P. infestans isolates tested. Using association genomics and long-read RenSeq, we defined eight additional Rpi-amr1 alleles from different S. americanum and related species. Despite only ~90% identity between Rpi-amr1 proteins, all confer late blight resistance but differentially recognize Avramr1 orthologues and paralogues. We propose that Rpi-amr1 gene family diversity assists detection of diverse paralogues and alleles of the recognized effector, facilitating durable resistance against P. infestans.


Asunto(s)
Mapeo Cromosómico , Clonación Molecular/métodos , Resistencia a la Enfermedad/genética , Phytophthora infestans/patogenicidad , Enfermedades de las Plantas/genética , Inmunidad de la Planta/genética , Solanum/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genómica , Fitomejoramiento/métodos
8.
Mol Plant Pathol ; 21(11): 1502-1512, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32935441

RESUMEN

Potato late blight, caused by the oomycete pathogen Phytophthora infestans, significantly hampers potato production. Recently, a new Resistance to Phytophthora infestans (Rpi) gene, Rpi-amr1, was cloned from a wild Solanum species, Solanum americanum. Identification of the corresponding recognized effector (Avirulence or Avr) genes from P. infestans is key to elucidating their naturally occurring sequence variation, which in turn informs the potential durability of the cognate late blight resistance. To identify the P. infestans effector recognized by Rpi-amr1, we screened available RXLR effector libraries and used long read and cDNA pathogen-enrichment sequencing (PenSeq) on four P. infestans isolates to explore the untested effectors. Using single-molecule real-time sequencing (SMRT) and cDNA PenSeq, we identified 47 highly expressed effectors from P. infestans, including PITG_07569, which triggers a highly specific cell death response when transiently coexpressed with Rpi-amr1 in Nicotiana benthamiana, suggesting that PITG_07569 is Avramr1. Here we demonstrate that long read and cDNA PenSeq enables the identification of full-length RXLR effector families and their expression profile. This study has revealed key insights into the evolution and polymorphism of a complex RXLR effector family that is associated with the recognition by Rpi-amr1.


Asunto(s)
Phytophthora infestans/genética , Enfermedades de las Plantas/parasitología , Polimorfismo Genético/genética , Solanum tuberosum/parasitología , Proteínas Algáceas/genética , Proteínas Algáceas/metabolismo , Muerte Celular , ADN Complementario/genética , Phytophthora infestans/patogenicidad , Solanum/virología , Nicotiana/virología
9.
mBio ; 11(3)2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32605983

RESUMEN

Plants deploy cell surface receptors known as pattern-recognition receptors (PRRs) that recognize non-self molecules from pathogens and microbes to defend against invaders. PRRs typically recognize microbe-associated molecular patterns (MAMPs) that are usually widely conserved, some even across kingdoms. Here, we report an oomycete-specific family of small secreted cysteine-rich (SCR) proteins that displays divergent patterns of sequence variation in the Irish potato famine pathogen Phytophthora infestans A subclass that includes the conserved effector PcF from Phytophthora cactorum activates immunity in a wide range of plant species. In contrast, the more diverse SCR74 subclass is specific to P. infestans and tends to trigger immune responses only in a limited number of wild potato genotypes. The SCR74 response was recently mapped to a G-type lectin receptor kinase (G-LecRK) locus in the wild potato Solanum microdontum subsp. gigantophyllum. The G-LecRK locus displays a high diversity in Solanum host species compared to other solanaceous plants. We propose that the diversification of the SCR74 proteins in P. infestans is driven by a fast coevolutionary arms race with cell surface immune receptors in wild potato, which contrasts the presumed slower dynamics between conserved apoplastic effectors and PRRs. Understanding the molecular determinants of plant immune responses to these divergent molecular patterns in oomycetes is expected to contribute to deploying multiple layers of disease resistance in crop plants.IMPORTANCE Immune receptors at the plant cell surface can recognize invading microbes. The perceived microbial molecules are typically widely conserved and therefore the matching surface receptors can detect a broad spectrum of pathogens. Here we describe a family of Phytophthora small extracellular proteins that consists of conserved subfamilies that are widely recognized by solanaceous plants. Remarkably, one subclass of SCR74 proteins is highly diverse, restricted to the late blight pathogen Phytophthora infestans and is specifically detected in wild potato plants. The diversification of this subfamily exhibits signatures of a coevolutionary arms race with surface receptors in potato. Insights into the molecular interaction between these potato-specific receptors and the recognized Phytophthora proteins are expected to contribute to disease resistance breeding in potato.


Asunto(s)
Phytophthora infestans/genética , Enfermedades de las Plantas/inmunología , Receptores de Reconocimiento de Patrones/inmunología , Solanum tuberosum/inmunología , Resistencia a la Enfermedad , Evolución Molecular , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Filogenia , Phytophthora infestans/patogenicidad , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Receptores de Reconocimiento de Patrones/genética , Solanum tuberosum/genética
10.
Proc Natl Acad Sci U S A ; 117(17): 9613-9620, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32284406

RESUMEN

In plants and animals, nucleotide-binding leucine-rich repeat (NLR) proteins are intracellular immune sensors that recognize and eliminate a wide range of invading pathogens. NLR-mediated immunity is known to be modulated by environmental factors. However, how pathogen recognition by NLRs is influenced by environmental factors such as light remains unclear. Here, we show that the agronomically important NLR Rpi-vnt1.1 requires light to confer disease resistance against races of the Irish potato famine pathogen Phytophthora infestans that secrete the effector protein AVRvnt1. The activation of Rpi-vnt1.1 requires a nuclear-encoded chloroplast protein, glycerate 3-kinase (GLYK), implicated in energy production. The pathogen effector AVRvnt1 binds the full-length chloroplast-targeted GLYK isoform leading to activation of Rpi-vnt1.1. In the dark, Rpi-vnt1.1-mediated resistance is compromised because plants produce a shorter GLYK-lacking the intact chloroplast transit peptide-that is not bound by AVRvnt1. The transition between full-length and shorter plant GLYK transcripts is controlled by a light-dependent alternative promoter selection mechanism. In plants that lack Rpi-vnt1.1, the presence of AVRvnt1 reduces GLYK accumulation in chloroplasts counteracting GLYK contribution to basal immunity. Our findings revealed that pathogen manipulation of chloroplast functions has resulted in a light-dependent immune response.


Asunto(s)
Cloroplastos/microbiología , Regulación de la Expresión Génica de las Plantas/inmunología , Luz , Proteínas NLR/metabolismo , Phytophthora infestans/metabolismo , Proteínas de Plantas/metabolismo , Agrobacterium/metabolismo , Animales , Cloroplastos/metabolismo , Escherichia coli/metabolismo , Proteínas Fúngicas , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Silenciador del Gen , Microscopía Confocal , Proteínas NLR/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas de Plantas/genética , Plantones , Solanum tuberosum/metabolismo , Solanum tuberosum/microbiología , Nicotiana/metabolismo , Nicotiana/microbiología , Técnicas del Sistema de Dos Híbridos
11.
New Phytol ; 227(4): 1264-1276, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32285454

RESUMEN

The identification of immune receptors in crop plants is time-consuming but important for disease control. Previously, resistance gene enrichment sequencing (RenSeq) was developed to accelerate mapping of nucleotide-binding domain and leucine-rich repeat containing (NLR) genes. However, resistances mediated by pattern recognition receptors (PRRs) remain less utilized. Here, our pipeline shows accelerated mapping of PRRs. Effectoromics leads to precise identification of plants with target PRRs, and subsequent RLP/K enrichment sequencing (RLP/KSeq) leads to detection of informative single nucleotide polymorphisms that are linked to the trait. Using Phytophthora infestans as a model, we identified Solanum microdontum plants that recognize the apoplastic effectors INF1 or SCR74. RLP/KSeq in a segregating Solanum population confirmed the localization of the INF1 receptor on chromosome 12, and led to the rapid mapping of the response to SCR74 to chromosome 9. By using markers obtained from RLP/KSeq in conjunction with additional markers, we fine-mapped the SCR74 receptor to a 43-kbp G-LecRK locus. Our findings show that RLP/KSeq enables rapid mapping of PRRs and is especially beneficial for crop plants with large and complex genomes. This work will enable the elucidation and characterization of the nonNLR plant immune receptors and ultimately facilitate informed resistance breeding.


Asunto(s)
Phytophthora infestans , Solanum , Secuencia de Aminoácidos , Fitomejoramiento , Enfermedades de las Plantas/genética , Receptores de Reconocimiento de Patrones
12.
BMC Evol Biol ; 18(1): 93, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29973156

RESUMEN

BACKGROUND: Outbreaks caused by asexual lineages of fungal and oomycete pathogens are a continuing threat to crops, wild animals and natural ecosystems (Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ, Nature 484:186-194, 2012; Kupferschmidt K, Science 337:636-638, 2012). However, the mechanisms underlying genome evolution and phenotypic plasticity in asexual eukaryotic microbes remain poorly understood (Seidl MF, Thomma BP, BioEssays 36:335-345, 2014). Ever since the 19th century Irish famine, the oomycete Phytophthora infestans has caused recurrent outbreaks on potato and tomato crops that have been primarily caused by the successive rise and migration of pandemic asexual lineages (Goodwin SB, Cohen BA, Fry WE, Proc Natl Acad Sci USA 91:11591-11595, 1994; Yoshida K, Burbano HA, Krause J, Thines M, Weigel D, Kamoun S, PLoS Pathog 10:e1004028, 2014; Yoshida K, Schuenemann VJ, Cano LM, Pais M, Mishra B, Sharma R, Lanz C, Martin FN, Kamoun S, Krause J, et al. eLife 2:e00731, 2013; Cooke DEL, Cano LM, Raffaele S, Bain RA, Cooke LR, Etherington GJ, Deahl KL, Farrer RA, Gilroy EM, Goss EM, et al. PLoS Pathog 8:e1002940, 2012). However, the dynamics of genome evolution within these clonal lineages have not been determined. The objective of this study was to use a comparative genomics and transcriptomics approach to determine the molecular mechanisms that underpin phenotypic variation within a clonal lineage of P. infestans. RESULTS: Here, we reveal patterns of genomic and gene expression variation within a P. infestans asexual lineage by comparing strains belonging to the South American EC-1 clone that has dominated Andean populations since the 1990s (Yoshida K, Burbano HA, Krause J, Thines M, Weigel D, Kamoun S, PLoS Pathog 10e1004028, 2014; Yoshida K, Schuenemann VJ, Cano LM, Pais M, Mishra B, Sharma R, Lanz C, Martin FN, Kamoun S, Krause J, et al. eLife 2:e00731, 2013; Delgado RA, Monteros-Altamirano AR, Li Y, Visser RGF, van der Lee TAJ, Vosman B, Plant Pathol 62:1081-1088, 2013; Forbes GA, Escobar XC, Ayala CC, Revelo J, Ordonez ME, Fry BA, Doucett K, Fry WE, Phytopathology 87:375-380, 1997; Oyarzun PJ, Pozo A, Ordonez ME, Doucett K, Forbes GA, Phytopathology 88:265-271, 1998). We detected numerous examples of structural variation, nucleotide polymorphisms and loss of heterozygosity within the EC-1 clone. Remarkably, 17 genes are not expressed in one of the two EC-1 isolates despite apparent absence of sequence polymorphisms. Among these, silencing of an effector gene was associated with evasion of disease resistance conferred by a potato immune receptor. CONCLUSIONS: Our findings highlight the molecular changes underpinning the exceptional genetic and phenotypic plasticity associated with host adaptation in a pandemic clonal lineage of a eukaryotic plant pathogen. We observed that the asexual P. infestans lineage EC-1 can exhibit phenotypic plasticity in the absence of apparent genetic mutations resulting in virulence on a potato carrying the Rpi-vnt1.1 gene. Such variant alleles may be epialleles that arose through epigenetic changes in the underlying genes.


Asunto(s)
Interacciones Huésped-Patógeno/genética , Evasión Inmune/genética , Inmunidad/genética , Phytophthora infestans/genética , Enfermedades de las Plantas/inmunología , Polimorfismo Genético , Solanum tuberosum/inmunología , Solanum tuberosum/microbiología , Regulación de la Expresión Génica , Filogenia , Phytophthora infestans/patogenicidad , Enfermedades de las Plantas/microbiología , Virulencia
13.
Mol Plant Microbe Interact ; 31(8): 795-802, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29451434

RESUMEN

The ELICITIN RESPONSE protein (ELR) from Solanum microdontum can recognize INF1 elicitin of Phytophthora infestans and trigger defense responses. ELR is a receptor-like protein (RLP) that lacks a cytoplasmic signaling domain and is anticipated to require interaction with a signaling-competent receptor-like kinase. SUPPRESSOR OF BIR1-1 (SOBIR1) has been proposed as a general interactor for RLPs involved in immunity and, as such, is a potential interactor for ELR. Here, we investigate whether SOBIR1 is required for response to INF1 and resistance to P. infestans and whether it associates with ELR. Our results show that virus-induced gene silencing of SOBIR1 in Nicotiana benthamiana leads to loss of INF1-triggered cell death and increased susceptibility to P. infestans. Using genetic complementation, we found that the kinase activity of SOBIR1 is required for INF1-triggered cell death. Coimmunoprecipitation experiments showed that ELR constitutively associates with potato SOBIR1 in planta, forming a bipartite receptor complex. Upon INF1 elicitation, this ELR-SOBIR1 complex recruits SERK3 (SOMATIC EMBRYOGENESIS RECEPTOR KINASE 3) leading to downstream signaling activation. Overall, our study shows that SOBIR1 is required for basal resistance to P. infestans and for INF1-triggered cell death and functions as an adaptor kinase for ELR.


Asunto(s)
Fosfotransferasas/metabolismo , Phytophthora infestans , Proteínas de Plantas/metabolismo , Solanum/metabolismo , Solanum/microbiología , Muerte Celular , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente , Dominios Proteicos , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/microbiología
14.
Mol Plant Microbe Interact ; 31(7): 692-694, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29432053

RESUMEN

The Alternaria genus consists of saprophytic fungi as well as plant-pathogenic species that have significant economic impact. To date, the genomes of multiple Alternaria species have been sequenced. These studies have yielded valuable data for molecular studies on Alternaria fungi. However, most of the current Alternaria genome assemblies are highly fragmented, thereby hampering the identification of genes that are involved in causing disease. Here, we report a gapless genome assembly of A. solani, the causal agent of early blight in tomato and potato. The genome assembly is a significant step toward a better understanding of pathogenicity of A. solani.


Asunto(s)
Alternaria/genética , Genoma Fúngico , Enfermedades de las Plantas/microbiología , Solanum lycopersicum/microbiología , Solanum tuberosum/microbiología
15.
Methods Mol Biol ; 1578: 337-353, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28220439

RESUMEN

In modern resistance breeding, effectors have emerged as tools for accelerating and improving the identification of immune receptors. Effector-assisted breeding was pioneered for identifying resistance genes (R genes) against Phytophthora infestans in potato (Solanum tuberosum). Here we show that effectoromics approaches are also well suitable for identifying pathogen recognition receptors (PRRs) that recognize apoplastic effectors. To detect genotypes that recognize apoplastic proteins of P. infestans, routine agroinfiltration and potato virus X (PVX) agroinfection methods can be applied. In addition, protein infiltrations are feasible for assessing responses to apoplastic effectors and aid in confirming results obtained from the aforementioned methods. Protocols for the effectoromics pipeline are provided, starting from phenotyping for effector responses, up to genotyping and PRR gene identification.


Asunto(s)
Phytophthora infestans/patogenicidad , Proteínas de Plantas/metabolismo , Proteómica/métodos , Receptores de Reconocimiento de Patrones/metabolismo , Solanum tuberosum/parasitología , Mapeo Cromosómico , Resistencia a la Enfermedad , Genotipo , Fitomejoramiento , Proteínas de Plantas/genética , Receptores de Reconocimiento de Patrones/genética , Solanum tuberosum/genética , Solanum tuberosum/metabolismo
16.
Theor Appl Genet ; 129(1): 105-15, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26518573

RESUMEN

KEY MESSAGE: We show the usefulness of integrating effector screening in a breeding program and in resistance gene cloning, with Phytophthora resistance in the Swedish potato breeding clone SW93-1015 as an example. Phytophthora infestans is one of the most devastating plant pathogens worldwide. We have earlier found that the SW93-1015 potato breeding clone has an efficient resistance against P. infestans under field conditions in Sweden, which has an unusually high local diversity of the pathogen. This potato clone has characteristics that are different from classical R-gene-mediated resistance such as elevated levels of hydrogen peroxide (H2O2) under controlled conditions. Analysis of 76 F1 potato progenies from two individual crosses resulted in nearly 50% resistant clones, from both crosses. This result suggests that the SW93-1015 clone has a simplex genotype for this trait. Screening with over 50 different P. infestans effectors, containing the conserved motif RXLR (for Arg, any amino acid, Leu, Arg), revealed a specific response to Avr2, which suggests that SW93-1015 might contain a functional homolog of the R2 resistance gene. We cloned eight R2 gene homologs from SW93-1015, whereof seven have not been described before and one gene encoded a protein identical to Rpi-ABPT. Expression of this gene in potato cultivar Désirée provided R2-specific resistance, whereas other homologues did not. Using RNAseq analyses we designed a new DNA marker for the R2 resistance in SW93-1015. In summary, we have demonstrated the use of effector screening in practical breeding material and revealed the key resistance mechanism for SW93-1015.


Asunto(s)
Resistencia a la Enfermedad/genética , Genes de Plantas , Phytophthora infestans , Enfermedades de las Plantas/genética , Solanum tuberosum/genética , Secuencia de Aminoácidos , Cruzamiento , Clonación Molecular , Marcadores Genéticos , Genotipo , Datos de Secuencia Molecular , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/microbiología , Solanum tuberosum/microbiología
17.
Nat Plants ; 1(4): 15034, 2015 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-27247034

RESUMEN

Potato late blight, caused by the destructive Irish famine pathogen Phytophthora infestans, is a major threat to global food security(1,2). All late blight resistance genes identified to date belong to the coiled-coil, nucleotide-binding, leucine-rich repeat class of intracellular immune receptors(3). However, virulent races of the pathogen quickly evolved to evade recognition by these cytoplasmic immune receptors(4). Here we demonstrate that the receptor-like protein ELR (elicitin response) from the wild potato Solanum microdontum mediates extracellular recognition of the elicitin domain, a molecular pattern that is conserved in Phytophthora species. ELR associates with the immune co-receptor BAK1/SERK3 and mediates broad-spectrum recognition of elicitin proteins from several Phytophthora species, including four diverse elicitins from P. infestans. Transfer of ELR into cultivated potato resulted in enhanced resistance to P. infestans. Pyramiding cell surface pattern recognition receptors with intracellular immune receptors could maximize the potential of generating a broader and potentially more durable resistance to this devastating plant pathogen.


Asunto(s)
Phytophthora infestans/patogenicidad , Proteínas de Plantas/inmunología , Proteínas/metabolismo , Solanum tuberosum/metabolismo , Solanum tuberosum/microbiología , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Moléculas de Patrón Molecular Asociado a Patógenos , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Solanum tuberosum/genética
18.
Methods Mol Biol ; 1127: 257-68, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24643566

RESUMEN

Effectoromics, a high-throughput functional genomics approach that uses effectors to probe plant germplasm to detect R genes, has proven a potent contribution to modern resistance breeding. Advantages of effectoromics are summarized in four aspects: (1) accelerating R gene identification; (2) distinguishing functional redundancy; (3) detecting recognition specificity and (4) assisting in R gene deployment. In this manuscript, we provide suggestions as well as some reminders for applying effectoromics in the breeding process. The two routine functional assays that are widely used, agroinfiltration and agroinfection, are presented. We briefly explain their advantages and disadvantages and provide protocols for applying them in the model system Nicotiana benthamiana as well as in potato (Solanum tuberosum).


Asunto(s)
Genómica/métodos , Nicotiana/genética , Solanum tuberosum/genética , Agrobacterium/metabolismo , Proteínas Bacterianas/metabolismo , Clonación Molecular , Resistencia a la Enfermedad/inmunología , Genes de Plantas , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Solanum tuberosum/inmunología , Solanum tuberosum/microbiología , Nicotiana/inmunología , Nicotiana/microbiología
19.
J Vis Exp ; (83): e50971, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24430891

RESUMEN

Agroinfiltration and PVX agroinfection are two efficient transient expression assays for functional analysis of candidate genes in plants. The most commonly used agent for agroinfiltration is Agrobacterium tumefaciens, a pathogen of many dicot plant species. This implies that agroinfiltration can be applied to many plant species. Here, we present our protocols and expected results when applying these methods to the potato (Solanum tuberosum), its related wild tuber-bearing Solanum species (Solanum section Petota) and the model plant Nicotiana benthamiana. In addition to functional analysis of single genes, such as resistance (R) or avirulence (Avr) genes, the agroinfiltration assay is very suitable for recapitulating the R-AVR interactions associated with specific host pathogen interactions by simply delivering R and Avr transgenes into the same cell. However, some plant genotypes can raise nonspecific defense responses to Agrobacterium, as we observed for example for several potato genotypes. Compared to agroinfiltration, detection of AVR activity with PVX agroinfection is more sensitive, more high-throughput in functional screens and less sensitive to nonspecific defense responses to Agrobacterium. However, nonspecific defense to PVX can occur and there is a risk to miss responses due to virus-induced extreme resistance. Despite such limitations, in our experience, agroinfiltration and PVX agroinfection are both suitable and complementary assays that can be used simultaneously to confirm each other's results.


Asunto(s)
Agrobacterium tumefaciens/genética , Técnicas de Transferencia de Gen , Nicotiana/genética , Potexvirus/genética , Solanum tuberosum/genética , Agricultura/métodos , Vectores Genéticos/genética , Plantas Modificadas Genéticamente
20.
Mol Biol Rep ; 40(2): 957-67, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23224656

RESUMEN

The most significant threat to potato production worldwide is the late blight disease, which is caused by the oomycete pathogen Phytophthora infestans. Based on previous cDNA microarrays and cDNA-amplified fragment length polymorphism analysis, 63 candidate genes that are expected to contribute to developing a durable resistance to late blight were selected for further functional analysis. We performed virus-induced gene silencing (VIGS) to these candidate genes on both Nicotiana benthamiana and potato, subsequently inoculated detached leaves and assessed the resistance level. Ten genes decreased the resistance to P. infestans after VIGS treatment. Among those, a lipoxygenase (LOX; EC 1.13.11.12) and a suberization-associated anionic peroxidase affected the resistance in both N. benthamiana and potato. Our results identify genes that may play a role in quantitative resistance mechanisms to late blight.


Asunto(s)
Resistencia a la Enfermedad/genética , Genes de Plantas , Phytophthora infestans/fisiología , Enfermedades de las Plantas/microbiología , Solanum tuberosum/genética , Agrobacterium tumefaciens , Silenciador del Gen , Estudios de Asociación Genética , Interacciones Huésped-Patógeno , Lipooxigenasa/genética , Lipooxigenasa/fisiología , Anotación de Secuencia Molecular , Peroxidasas/genética , Peroxidasas/fisiología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Virus de Plantas/genética , Solanum tuberosum/inmunología , Solanum tuberosum/microbiología , Nicotiana/genética , Nicotiana/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA