Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38279229

RESUMEN

Salinity is one of the most dangerous types of stress in agriculture. Acting on the root, salinity causes changes in physiological processes in the shoot, especially photosynthesis, which is crucial for plant productivity. In our study, we used potato plants, the most important crop, to investigate the role of salt-induced signals in changes in photosynthesis activity. We found a salt-induced polyphasic decrease in photosynthesis activity, and the earliest phase started several minutes after salt addition. We found that salt addition triggered rapid hydraulic and calcium waves from root to shoot, which occurred earlier than the first phase of the photosynthesis response. The inhibition of calcium signals by lanthanum decreased with the formation of rapid changes in photosynthesis. In addition to this, a comparison of the characteristic times of signal propagation and the formation of a response revealed the role of calcium waves in the modulation of rapid changes in photosynthesis. Calcium waves are activated by the ionic component of salinity. The salt-induced decrease in transpiration corresponds in time to the second phase of the photosynthetic response, and it can be the cause of this change. The accumulation of sodium in the leaves occurs a few hours after salt addition, and it can be the cause of the long-term suppression of photosynthesis. Thus, salinity modulates photosynthetic activity in plants in different ways: both through the activation of rapid distant signals and by reducing the water input and sodium accumulation.


Asunto(s)
Fotosíntesis , Cloruro de Sodio , Solanum tuberosum , Hojas de la Planta , Raíces de Plantas , Salinidad , Sodio , Cloruro de Sodio/toxicidad
2.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36613934

RESUMEN

Salinity is one of the most common factors limiting the productivity of crops. The damaging effect of salt stress on many vital plant processes is mediated, on the one hand, by the osmotic stress caused by large concentrations of Na+ and Cl- outside the root and, on the other hand, by the toxic effect of these ions loaded in the cell. In our work, the influence of salinity on the changes in photosynthesis, transpiration, water content and cytosolic pH in the leaves of two important crops of the Solanaceae family-tobacco and potato-was investigated. Salinity caused a decrease in photosynthesis activity, which manifested as a decrease in the quantum yield of photosystem II and an increase in non-photochemical quenching. Along with photosynthesis limitation, there was a slight reduction in the relative water content in the leaves and a decrease in transpiration, determined by the crop water stress index. Furthermore, a decrease in cytosolic pH was detected in tobacco and potato plants transformed by the gene of pH-sensitive protein Pt-GFP. The potential mechanisms of the salinity influence on the activity of photosynthesis were analyzed with the comparison of the parameters' dynamics, as well as the salt content in the leaves.


Asunto(s)
Nicotiana , Solanum tuberosum , Nicotiana/metabolismo , Solanum tuberosum/metabolismo , Fotosíntesis , Hojas de la Planta/metabolismo , Sodio/metabolismo , Salinidad
3.
Toxicol Sci ; 170(1): 123-132, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30985900

RESUMEN

Upconversion nanoparticles (UCNPs) are new-generation photoluminescent nanomaterials gaining considerable recognition in the life sciences due to their unique optical properties that allow high-contrast imaging in cells and tissues. Upconversion nanoparticle applications in optical diagnosis, bioassays, therapeutics, photodynamic therapy, drug delivery, and light-controlled release of drugs are promising, demanding a comprehensive systematic study of their pharmacological properties. We report on production of biofunctional UCNP-based nanocomplexes suitable for optical microscopy and imaging of HER2-positive cells and tumors, as well as on the comprehensive evaluation of their pharmacokinetics, pharmacodynamics, and toxicological properties using cells and laboratory animals. The nanocomplexes represent a UCNP core/shell structure of the NaYF4:Yb, Er, Tm/NaYF4 composition coated with an amphiphilic alternating copolymer of maleic anhydride with 1-octadecene (PMAO) and conjugated to the Designed Ankyrin Repeat Protein (DARPin 9_29) with high affinity to the HER2 receptor. We demonstrated the specific binding of UCNP-PMAO-DARPin to HER2-positive cancer cells in cultures and xenograft animal models allowing the tumor visualization for at least 24 h. An exhaustive study of the general and specific toxicity of UCNP-PMAO-DARPin including the evaluation of their allergenic, immunotoxic, and reprotoxic properties was carried out. The obtained experimental body of evidence leads to a conclusion that UCNP-PMAO and UCNP-PMAO-DARPin are functional, noncytotoxic, biocompatible, and safe for imaging applications in cells, small animals, and prospective clinical applications of image-guided surgery.


Asunto(s)
Neoplasias Mamarias Experimentales/diagnóstico por imagen , Nanopartículas/química , Polímeros/química , Imagen de Cuerpo Entero/métodos , Animales , Células CHO , Línea Celular Tumoral , Cricetulus , Evaluación Preclínica de Medicamentos , Erbio/química , Escherichia coli/genética , Fluoruros/química , Humanos , Mediciones Luminiscentes , Nanopartículas/metabolismo , Nanopartículas/toxicidad , Polímeros/farmacocinética , Polímeros/toxicidad , Receptor ErbB-2/genética , Propiedades de Superficie , Tulio/química , Distribución Tisular , Itrio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA