Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Comput Biol ; 20(2): e1011928, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38422116

RESUMEN

The hypothalamus is the central regulator of reproductive hormone secretion. Pulsatile secretion of gonadotropin releasing hormone (GnRH) is fundamental to physiological stimulation of the pituitary gland to release luteinizing hormone (LH) and follicle stimulating hormone (FSH). Furthermore, GnRH pulsatility is altered in common reproductive disorders such as polycystic ovary syndrome (PCOS) and hypothalamic amenorrhea (HA). LH is measured routinely in clinical practice using an automated chemiluminescent immunoassay method and is the gold standard surrogate marker of GnRH. LH can be measured at frequent intervals (e.g., 10 minutely) to assess GnRH/LH pulsatility. However, this is rarely done in clinical practice because it is resource intensive, and there is no open-access, graphical interface software for computational analysis of the LH data available to clinicians. Here we present hormoneBayes, a novel open-access Bayesian framework that can be easily applied to reliably analyze serial LH measurements to assess LH pulsatility. The framework utilizes parsimonious models to simulate hypothalamic signals that drive LH dynamics, together with state-of-the-art (sequential) Monte-Carlo methods to infer key parameters and latent hypothalamic dynamics. We show that this method provides estimates for key pulse parameters including inter-pulse interval, secretion and clearance rates and identifies LH pulses in line with the widely used deconvolution method. We show that these parameters can distinguish LH pulsatility in different clinical contexts including in reproductive health and disease in men and women (e.g., healthy men, healthy women before and after menopause, women with HA or PCOS). A further advantage of hormoneBayes is that our mathematical approach provides a quantified estimation of uncertainty. Our framework will complement methods enabling real-time in-vivo hormone monitoring and therefore has the potential to assist translation of personalized, data-driven, clinical care of patients presenting with conditions of reproductive hormone dysfunction.


Asunto(s)
Hormona Liberadora de Gonadotropina , Hormona Luteinizante , Masculino , Femenino , Humanos , Teorema de Bayes , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Folículo Estimulante , Hipotálamo/metabolismo
2.
J Clin Invest ; 130(12): 6739-6753, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33196464

RESUMEN

BACKGROUNDKisspeptin is a key regulator of hypothalamic gonadotropin-releasing hormone (GnRH) neurons and is essential for reproductive health. A specific kisspeptin receptor (KISS1R) agonist could significantly expand the potential clinical utility of therapeutics targeting the kisspeptin pathway. Herein, we investigate the effects of a KISS1R agonist, MVT-602, in healthy women and in women with reproductive disorders.METHODSWe conducted in vivo and in vitro studies to characterize the action of MVT-602 in comparison with native kisspeptin-54 (KP54). We determined the pharmacokinetic and pharmacodynamic properties of MVT-602 (doses 0.01 and 0.03 nmol/kg) versus KP54 (9.6 nmol/kg) in the follicular phase of healthy women (n = 9), and in women with polycystic ovary syndrome (PCOS; n = 6) or hypothalamic amenorrhea (HA; n = 6). Further, we investigated their effects on KISS1R-mediated inositol monophosphate (IP1) and Ca2+ signaling in cell lines and on action potential firing of GnRH neurons in brain slices.RESULTSIn healthy women, the amplitude of luteinizing hormone (LH) rise was similar to that after KP54, but peaked later (21.4 vs. 4.7 hours; P = 0.0002), with correspondingly increased AUC of LH exposure (169.0 vs. 38.5 IU∙h/L; P = 0.0058). LH increases following MVT-602 were similar in PCOS and healthy women, but advanced in HA (P = 0.004). In keeping with the clinical data, MVT-602 induced more potent signaling of KISS1R-mediated IP1 accumulation and a longer duration of GnRH neuron firing than KP54 (115 vs. 55 minutes; P = 0.0012).CONCLUSIONTaken together, these clinical and mechanistic data identify MVT-602 as having considerable therapeutic potential for the treatment of female reproductive disorders.TRIAL REGISTRATIONInternational Standard Randomised Controlled Trial Number (ISRCTN) Registry, ISRCTN21681316.FUNDINGNational Institute for Health Research and NIH.


Asunto(s)
Amenorrea , Señalización del Calcio/efectos de los fármacos , Kisspeptinas/administración & dosificación , Fragmentos de Péptidos/administración & dosificación , Síndrome del Ovario Poliquístico , Receptores de Kisspeptina-1/agonistas , Adolescente , Adulto , Amenorrea/sangre , Amenorrea/tratamiento farmacológico , Amenorrea/patología , Línea Celular , Femenino , Humanos , Hipotálamo/metabolismo , Hipotálamo/patología , Hormona Luteinizante/sangre , Síndrome del Ovario Poliquístico/sangre , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Síndrome del Ovario Poliquístico/patología , Receptores de Kisspeptina-1/metabolismo
3.
Trends Endocrinol Metab ; 30(4): 244-257, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30799185

RESUMEN

Hormone rhythms are ubiquitous and essential to sustain normal physiological functions. Combined mathematical modelling and experimental approaches have shown that these rhythms result from regulatory processes occurring at multiple levels of organisation and require continuous dynamic equilibration, particularly in response to stimuli. We review how such an interdisciplinary approach has been successfully applied to unravel complex regulatory mechanisms in the metabolic, stress, and reproductive axes. We discuss how this strategy is likely to be instrumental for making progress in emerging areas such as chronobiology and network physiology. Ultimately, we envisage that the insight provided by mathematical models could lead to novel experimental tools able to continuously adapt parameters to gradual physiological changes and the design of clinical interventions to restore normal endocrine function.


Asunto(s)
Cronoterapia , Ritmo Circadiano/fisiología , Sistema Endocrino/metabolismo , Hormonas/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Modelos Teóricos , Ritmo Ultradiano/fisiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA