Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 10628, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32606321

RESUMEN

Regional changes of non-rapid eye movement (NREM) sleep delta and sigma activity, and their temporal coupling have been related to experience-dependent plastic changes during previous wakefulness. These sleep-specific rhythms seem to be important for brain recovery and memory consolidation. Recently, it was demonstrated that by targeting slow waves in a particular region at a specific phase with closed-loop auditory stimulation, it is possible to locally manipulate slow-wave activity and interact with training-induced neuroplastic changes. In our study, we tested whether closed-loop auditory stimulation targeting the up-phase of slow waves might not only interact with the main sleep rhythms but also with their coupling within the circumscribed region. We demonstrate that while closed-loop auditory stimulation globally enhances delta, theta and sigma power, changes in cross-frequency coupling of these oscillations were more spatially restricted. Importantly, a significant increase in delta-sigma coupling was observed over the right parietal area, located directly posterior to the target electrode. These findings suggest that closed-loop auditory stimulation locally modulates coupling between delta phase and sigma power in a targeted region, which could be used to manipulate sleep-dependent neuroplasticity within the brain network of interest.


Asunto(s)
Percepción Auditiva , Ritmo Delta , Sueño de Onda Lenta/fisiología , Ritmo Teta , Estimulación Acústica , Femenino , Humanos , Masculino , Lóbulo Parietal/fisiología , Adulto Joven
2.
Nat Commun ; 8: 15405, 2017 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-28530229

RESUMEN

It is hypothesized that deep sleep is essential for restoring the brain's capacity to learn efficiently, especially in regions heavily activated during the day. However, causal evidence in humans has been lacking due to the inability to sleep deprive one target area while keeping the natural sleep pattern intact. Here we introduce a novel approach to focally perturb deep sleep in motor cortex, and investigate the consequences on behavioural and neurophysiological markers of neuroplasticity arising from dedicated motor practice. We show that the capacity to undergo neuroplastic changes is reduced by wakefulness but restored during unperturbed sleep. This restorative process is markedly attenuated when slow waves are selectively perturbed in motor cortex, demonstrating that deep sleep is a requirement for maintaining sustainable learning efficiency.


Asunto(s)
Encéfalo/fisiología , Aprendizaje , Sueño , Estimulación Acústica , Adulto , Conducta , Electrodos , Electroencefalografía , Electromiografía , Femenino , Humanos , Masculino , Corteza Motora , Destreza Motora/fisiología , Plasticidad Neuronal , Estimulación Magnética Transcraneal , Vigilia/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA