RESUMEN
Liver microphysiological systems (MPSs) are promising models for predicting hepatic drug effects. Yet, after a decade since their introduction, MPSs are not routinely used in drug development due to lack of criteria for ensuring reproducibility of results. We characterized the feasibility of a liver MPS to yield reproducible outcomes of experiments assaying drug toxicity, metabolism, and intracellular accumulation. The ability of the liver MPS to reproduce hepatotoxic effects was assessed using trovafloxacin, which increased lactate dehydrogenase (LDH) release and reduced cytochrome P450 3A4 (CYP3A4) activity. These observations were made in two test sites and with different batches of Kupffer cells. Upon culturing equivalent hepatocytes in the MPS, spheroids, and sandwich cultures, differences between culture formats were detected in CYP3A4 activity and albumin production. Cells in all culture formats exhibited different sensitivities to hepatotoxicant exposure. Hepatocytes in the MPS were more functionally stable than those of other culture platforms, as CYP3A4 activity and albumin secretion remained prominent for greater than 18 days in culture, whereas functional decline occurred earlier in spheroids (12 days) and sandwich cultures (7 days). The MPS was also demonstrated to be suitable for metabolism studies, where CYP3A4 activity, troglitazone metabolites, diclofenac clearance, and intracellular accumulation of chloroquine were quantified. To ensure reproducibility between studies with the MPS, the combined use of LDH and CYP3A4 assays were implemented as quality control metrics. Overall results indicated that the liver MPS can be used reproducibly in general drug evaluation applications. Study outcomes led to general considerations and recommendations for using liver MPSs. Study Highlights WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? Microphysiological systems (MPSs) have been designed to recreate organ- or tissue-specific characteristics of extracellular microenvironments that enhance the physiological relevance of cells in culture. Liver MPSs enable long-lasting and stable culture of hepatic cells by culturing them in three-dimensions and exposing them to fluid flow. WHAT QUESTION DID THIS STUDY ADDRESS? What is the functional performance relative to other cell culture platforms and the reproducibility of a liver MPS for assessing drug development and evaluation questions, such as toxicity, metabolism, and pharmacokinetics? WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE? The liver MPS systematically detected the toxicity of trovafloxacin. When compared with spheroids and sandwich cultures, this system had a more stable function and different sensitivity to troglitazone, tamoxifen, and digoxin. Quantifying phase II metabolism of troglitazone and intracellular accumulation of chloroquine demonstrated the potential use of the liver MPS for studying drug metabolism and pharmacokinetics. Quality control criteria for assessing chip function were key for reliably using the liver MPS. HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR TRANSLATIONAL SCIENCE? Due to its functional robustness and physiological relevance (3D culture, cells expose to fluid flow and co-culture of different cell types), the liver MPS can, in a reproducible manner: (i) detect inflammatory-induced drug toxicity, as demonstrated with trovafloxacin, (ii) detect the toxicity of other drugs, such as troglitazone, tamoxifen, and digoxin, with different effects than those detected in spheroids and sandwich cultures, (iii) enable studies of hepatic function that rely on prolonged cellular activity, and (iv) detect phase II metabolites and drug accumulation to potentially support the interpretation of clinical data. The integration of MPSs in drug development will be facilitated by careful evaluation of performance and reproducibility as performed in this study.
Asunto(s)
Hígado/efectos de los fármacos , Cultivo Primario de Células/métodos , Pruebas de Toxicidad/métodos , Células Cultivadas , Citocromo P-450 CYP3A/metabolismo , Evaluación Preclínica de Medicamentos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Dispositivos Laboratorio en un Chip , Hígado/citología , Hígado/metabolismo , Modelos Biológicos , Cultivo Primario de Células/instrumentación , Reproducibilidad de los Resultados , Esferoides Celulares , Pruebas de Toxicidad/instrumentaciónRESUMEN
INTRODUCTION: Given that membrane efflux transporters can influence a drug's pharmacokinetics, efficacy and safety, identifying potential substrates and inhibitors of these transporters is a critical element in the drug discovery and development process. Additionally, it is important to predict the inhibition potential of new drugs to avoid clinically significant drug interactions. The goal of preclinical studies is to characterize a new drug as a substrate or inhibitor of efflux transporters. Areas covered: This article reviews preclinical systems that are routinely utilized to determine whether a new drug is substrate or inhibitor of efflux transporters including in silico models, in vitro membrane and cell assays, and animal models. Also included is an examination of studies comparing in vitro inhibition data to clinical drug interaction outcomes. Expert opinion: While a number of models are employed to classify a drug as an efflux substrate or inhibitor, there are challenges in predicting clinical drug interactions. Improvements could be made in these predictions through a tier approach to classify new drugs, validation of preclinical assays, and refinement of threshold criteria for clinical interaction studies.
Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Diseño de Fármacos , Descubrimiento de Drogas/métodos , Animales , Simulación por Computador , Evaluación Preclínica de Medicamentos/métodos , Interacciones Farmacológicas , HumanosRESUMEN
INTRODUCTION: Although years of research have expanded the use of biologics for several clinical conditions, such development has not yet occurred in the treatment of neurological diseases. With the advancement of biologic technologies, there is promise for these therapeutics as novel therapeutic approaches for neurological diseases. Areas covered: In this article, the authors review the therapeutic potential of different types of biologics for the treatment of neurological diseases. Preclinical and clinical studies that investigate the efficacy and safety of biologics in the treatment of neurological diseases, namely Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson disease, multiple sclerosis, and stroke, were reviewed. Moreover, the authors describe the key challenges in the development of therapeutically safe and effective biologics for the treatment of neurological diseases. Expert opinion: Several biologics have shown promise in the treatment of neurological diseases. However, the complexity of the CNS, as well as a limited understanding of disease progression, and restricted access of biologics to the CNS has limited successful development. Therefore, more research needs to be conducted to overcome these hurdles before developing effective and safe biologics for neurological diseases. The emergence of new technologies for the design, production and delivery of biologics will accelerate translating biologics to the clinic.