Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Pain ; 15(4): 387.e1-14, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24374196

RESUMEN

UNLABELLED: Voltage-gated Ca(2+) channels play an important role in nociceptive transmission. There is significant evidence supporting a role for N-, T- and P/Q-type Ca(2+) channels in chronic pain. Here, we report that A-1264087, a structurally novel state-dependent blocker, inhibits each of these human Ca(2+) channels with similar potency (IC50 = 1-2 µM). A-1264087 was also shown to inhibit the release of the pronociceptive calcitonin gene-related peptide from rat dorsal root ganglion neurons. Oral administration of A-1264087 produces robust antinociceptive efficacy in monoiodoacetate-induced osteoarthritic, complete Freund adjuvant-induced inflammatory, and chronic constrictive injury of sciatic nerve-induced, neuropathic pain models with ED50 values of 3.0, 5.7, and 7.8 mg/kg (95% confidence interval = 2.2-3.5, 3.7-10, and 5.5-12.8 mg/kg), respectively. Further analysis revealed that A-1264087 also suppressed nociceptive-induced p38 and extracellular signal-regulated kinase 1/2 phosphorylation, which are biochemical markers of engagement of pain circuitry in chronic pain states. Additionally, A-1264087 inhibited both spontaneous and evoked neuronal activity in the spinal cord dorsal horn in complete Freund adjuvant-inflamed rats, providing a neurophysiological basis for the observed antihyperalgesia. A-1264087 produced no alteration of body temperature or motor coordination and no learning impairment at therapeutic plasma concentrations. PERSPECTIVE: The present results demonstrate that the neuronal Ca(2+) channel blocker A-1264087 exhibits broad-spectrum efficacy through engagement of nociceptive signaling pathways in preclinical pain models in the absence of effects on psychomotor and cognitive function.


Asunto(s)
Analgésicos/farmacología , Compuestos de Azabiciclo/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Leucina/análogos & derivados , Neuronas/metabolismo , Nocicepción/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Inmunohistoquímica , Leucina/farmacología , Masculino , Neuronas/efectos de los fármacos , Dolor/metabolismo , Técnicas de Placa-Clamp , Ratas Sprague-Dawley , Médula Espinal/metabolismo
2.
Assay Drug Dev Technol ; 10(6): 542-50, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22428804

RESUMEN

Ca(V)2.2 (N-type) calcium channels are key regulators of neurotransmission. Evidence from knockout animals and localization studies suggest that Ca(V)2.2 channels play a critical role in nociceptive transmission. Additionally, ziconotide, a selective peptide inhibitor of Ca(V)2.2 channels, is clinically used to treat refractory pain. However, the use of ziconotide is limited by its low therapeutic index, which is believed, at least in part, to be a consequence of ziconotide inhibiting Ca(V)2.2 channels regardless of the channel state. Subsequent efforts have focused on the discovery of state-dependent inhibitors that preferentially bind to the inactivated state of Ca(V)2.2 channels in order to achieve an improved safety profile relative to ziconotide. Much less attention has been paid to understanding the binding kinetics of these state-dependent inhibitors. Here, we describe a novel electrophysiology-based assay on an automated patch platform designed to differentiate Ca(V)2.2 inhibitors based on their combined state dependence and kinetics. More specifically, this assay assesses inactivated state block, closed state block, and monitors the kinetics of recovery from block when channels move between states. Additionally, a use-dependent assay is described that uses a train of depolarizing pulses to drive channels to a similar level of inactivation for comparison. This use-dependent protocol also provides information on the kinetics of block development. Data are provided to show how these assays can be utilized to screen for kinetic diversity within and across chemical classes.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo N/efectos de los fármacos , Electrofisiología/métodos , Animales , Automatización , Bioensayo , Línea Celular , Interpretación Estadística de Datos , Evaluación Preclínica de Medicamentos , Indoles/farmacología , Cinética , Técnicas de Placa-Clamp , Pirimidinas/farmacología , Ratas , Relación Estructura-Actividad , Triazinas/farmacología , Triazoles/farmacología , omega-Conotoxinas/farmacología
3.
J Med Chem ; 51(22): 7094-8, 2008 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-18983139

RESUMEN

cis-4-(Piperazin-1-yl)-5,6,7a,8,9,10,11,11a-octahydrobenzofuro[2,3-h]quinazolin-2-amine, 4 (A-987306) is a new histamine H(4) antagonist. The compound is potent in H(4) receptor binding assays (rat H(4), K(i) = 3.4 nM, human H(4) K(i) = 5.8 nM) and demonstrated potent functional antagonism in vitro at human, rat, and mouse H(4) receptors in cell-based FLIPR assays. Compound 4 also demonstrated H(4) antagonism in vivo in mice, blocking H(4)-agonist induced scratch responses, and showed anti-inflammatory activity in mice in a peritonitis model. Most interesting was the high potency and efficacy of this compound in blocking pain responses, where it showed an ED(50) of 42 mumol/kg (ip) in a rat post-carrageenan thermal hyperalgesia model of inflammatory pain.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Benzofuranos/farmacología , Hiperalgesia/tratamiento farmacológico , Dolor/prevención & control , Quinazolinas/farmacología , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Animales , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química , Benzofuranos/síntesis química , Benzofuranos/química , Carragenina , Modelos Animales de Enfermedad , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Humanos , Hiperalgesia/inducido químicamente , Ligandos , Ratones , Estructura Molecular , Dolor/fisiopatología , Peritonitis/tratamiento farmacológico , Quinazolinas/síntesis química , Quinazolinas/química , Ratas , Receptores Histamínicos , Receptores Histamínicos H4 , Estereoisomerismo , Relación Estructura-Actividad
4.
Mol Interv ; 6(5): 257-65, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17035666

RESUMEN

The hallucinogenic plant Salvia divinorum (i.e., "magic mint") is a member of the Sage family that has been used for divination and shamanism by the Mazatecs. Over the past decade or so, S. divinorum has been increasingly used recreationally. The neoclerodane diterpene salvinorin A is the active component of S. divinorum, and recently, the kappa opioid receptor (KOR) has been identified, in vitro and in vivo, as its molecular target. The discovery of KOR as the molecular target of salvinorin A has opened up many opportunities for drug discovery and drug development for a number of psychiatric and non-psychiatric disorders.


Asunto(s)
Diterpenos , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Extractos Vegetales , Salvia/química , Animales , Diterpenos/química , Diterpenos/metabolismo , Diterpenos/uso terapéutico , Diterpenos de Tipo Clerodano , Diseño de Fármacos , Alucinógenos/química , Alucinógenos/uso terapéutico , Humanos , Modelos Moleculares , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Extractos Vegetales/uso terapéutico , Unión Proteica , Conformación Proteica , Receptores Opioides kappa/química , Receptores Opioides kappa/metabolismo , Transducción de Señal/fisiología , Relación Estructura-Actividad
5.
IDrugs ; 8(6): 491-6, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15906196

RESUMEN

An estimated 50% of currently marketed drugs target G protein-coupled receptors (GPCRs) for a wide variety of indications, including central nervous system (CNS) disorders. Although drug discovery efforts have focused on GPCRs, less than 10% of GPCRs are currently used as drug targets. Thus, GPCRs continue to represent a significant opportunity for future CNS drug development. Identifying the molecular targets of psychoactive compounds may result in the elucidation of novel targets for CNS drug discovery. This commentary will describe discovery-based approaches and provide several recent examples of novel ligand-receptor interactions discovered through systematic screening of the 'receptorome'.


Asunto(s)
Fármacos del Sistema Nervioso Central/farmacología , Receptores Acoplados a Proteínas G/efectos de los fármacos , Receptores Acoplados a Proteínas G/genética , Animales , Evaluación Preclínica de Medicamentos , Genoma Humano , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA