Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Brain Behav ; 11(1): e01914, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33300668

RESUMEN

BACKGROUND: Meditation is increasingly attracting interest among neuroimaging researchers for its relevance as a cognitive enhancement technique and several cross-sectional studies have indicated cerebral changes. This longitudinal study applied a distinct and standardized meditative technique with a group of volunteers in a short-term training program to analyze brain metabolic changes. METHODS: The effect of 7 weeks of meditation exercises (focused attention meditation, FAM) was assessed on 27 healthy volunteers. Changes in cerebral energy metabolism were investigated using 31 P-MR spectroscopy. Metabolite ratios were compared before (T1) and after training (T2). Additional questionnaire assessments were included. RESULTS: The participants performed FAM daily. Depression and anxiety scores revealed a lower level of state anxiety at T2 compared to T1. From T1 to T2, energy metabolism ratios showed the following differences: PCr/ATP increased right occipitally; Pi/ATP decreased bilaterally in the basal ganglia and temporal lobe on the right; PCr/Pi increased in occipital lobe bilaterally, in the basal ganglia and in the temporal lobe on the right side. The pH decreased temporal on the left side and frontal in the right side. The observed changes in the temporal areas and basal ganglia may be interpreted as a higher energetic state, whereas the frontal and occipital areas showed changes that may be related to a down-regulation in ATP turnover, energy state, and oxidative capacity. CONCLUSIONS: The results of the current study indicate for the first time in a longitudinal study that even short-term training in FAM may have considerable effects on brain energy state with different local energy management in specific brain regions. Especially higher energetic state in basal ganglia may represent altered function in their central role in complex cerebral distributed networks including frontal and temporal areas. Further studies including different forms of relaxation techniques should be performed for more specific and reliable insights.


Asunto(s)
Meditación , Encéfalo/diagnóstico por imagen , Estudios Transversales , Metabolismo Energético , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Proyectos Piloto
2.
Behav Brain Res ; 395: 112828, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32745662

RESUMEN

BACKGROUND: Based on the evidence that meditation is associated with numerous beneficial effects on well-being and reduced stress-related symptoms, mindfulness-based techniques were increasingly implemented into psychotherapeutic programs. However, different meditation styles and the cross-sectional nature of most previous analyses resulted in a great variety of morphometric findings. The present study aims to elucidate cortical reorganization processes and altered axonal integrity caused by short-term meditation training, and benefits from solely using focused attention meditation (FAM). METHODS: 3 T MRI, including T1-MPRAGE and diffusion-weighted sequences, was performed in 27 healthy, meditation naïve participants (age: 43 ± 12.4 years) pre and post FAM meditation training (duration: 7.3 ± 0.4 weeks). Voxel-based morphometry was applied to assess brain changes in gray and white matter. Questionnaires were filled out by the individuals at both time-points to evaluate quality of life and self-awareness deficits. RESULTS: The major findings comprised (i) gray matter increases in the insula, the caudate nucleus and frontal cortices, (ii) decreases in extended parietotemporal regions, the right medial prefrontal cortex and the parahippocampal gyrus, as well as (iii) fractional anisotropy increases of the right hippocampus, the basal ganglia and adjacent regions. Regression analysis revealed an association of specific alterations with reduced levels of state anxiety. CONCLUSIONS: FAM training induced a broad range of dynamic brain alterations even within few weeks of training. Interestingly, this cohort revealed more, and partially different patterns of structural gray matter change compared to prior studies. The broad impact on neuronal organization processes may reflect more general outcomes related to health and well-being.


Asunto(s)
Encéfalo/fisiología , Meditación/psicología , Plasticidad Neuronal/fisiología , Adulto , Atención/fisiología , Encéfalo/diagnóstico por imagen , Núcleo Caudado/fisiología , Corteza Cerebral/fisiología , Femenino , Sustancia Gris/fisiología , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Meditación/métodos , Persona de Mediana Edad , Atención Plena , Corteza Prefrontal/fisiología , Calidad de Vida , Descanso/fisiología , Lóbulo Temporal/fisiología , Sustancia Blanca/fisiología
3.
Nat Commun ; 6: 6838, 2015 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-25913720

RESUMEN

Histone deacetylase inhibitors (HDACi) are approved for treating certain haematological malignancies, however, recent evidence also illustrates they are modulators of the immune system. In experimental models, HDACi are particularly potent against malignancies originating from the B-lymphocyte lineage. Here we examine the ability of this class of compounds to modify both protective and autoimmune antibody responses. In vitro, HDACi affect B-cell proliferation, survival and differentiation in an HDAC-class-dependent manner. Strikingly, treatment of lupus-prone Mrl/lpr mice with the HDACi panobinostat significantly reduces autoreactive plasma-cell numbers, autoantibodies and nephritis, while other immune parameters remain largely unaffected. Immunized control mice treated with panobinostat or the clinically approved HDACi vorinostat have significantly impaired primary antibody responses, but these treatments surprisingly spare circulating memory B cells. These studies indicate that panobinostat is a potential therapy for B-cell-driven autoimmune conditions and HDACi do not induce major long-term detrimental effects on B-cell memory.


Asunto(s)
Linfocitos B/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Indoles/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Evaluación Preclínica de Medicamentos , Femenino , Centro Germinal/efectos de los fármacos , Inhibidores de Histona Desacetilasas/uso terapéutico , Ácidos Hidroxámicos/uso terapéutico , Memoria Inmunológica/efectos de los fármacos , Indoles/uso terapéutico , Lupus Eritematoso Sistémico/tratamiento farmacológico , Masculino , Ratones Endogámicos C57BL , Panobinostat
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA