Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Plant Reprod ; 36(3): 263-272, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37222783

RESUMEN

During angiosperm sexual reproduction, pollen tubes must penetrate through multiple cell types in the pistil to mediate successful fertilization. Although this process is highly choreographed and requires complex chemical and mechanical signaling to guide the pollen tube to its destination, aspects of our understanding of pollen tube penetration through the pistil are incomplete. Our previous work demonstrated that disruption of the Arabidopsis thaliana O-FUCOSYLTRANSFERASE1 (OFT1) gene resulted in decreased pollen tube penetration through the stigma-style interface. Here, we demonstrate that second site mutations of Arabidopsis GALACTURONOSYLTRANSFERASE 14 (GAUT14) effectively suppress the phenotype of oft1 mutants, partially restoring silique length, seed set, pollen transmission, and pollen tube penetration deficiencies in navigating the female reproductive tract. These results suggest that disruption of pectic homogalacturonan (HG) synthesis can alleviate the penetrative defects associated with the oft1 mutant and may implicate pectic HG deposition in the process of pollen tube penetration through the stigma-style interface in Arabidopsis. These results also support a model in which OFT1 function directly or indirectly modifies structural features associated with the cell wall, with the loss of oft1 leading to an imbalance in the wall composition that can be compensated for by a reduction in pectic HG deposition.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Tubo Polínico/genética , Tubo Polínico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Polen/genética
2.
J Diabetes Res ; 2019: 2487804, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31687406

RESUMEN

Diabetes secondary to chronic pancreatitis (CP) or type 3cDM refers to a brittle form of diabetes and is often characterised by hypoglycaemic episodes, erratic glycaemic control, and impaired quality of life. It differs from other forms of diabetes and is typically characterised by concurrent pancreatic endocrine and exocrine insufficiency which can present as malabsorption and nutritional deficiencies. In this review, we discuss the pathogenesis, epidemiology, and the practicalities of diagnosis, screening, and management of this condition.


Asunto(s)
Diabetes Mellitus/etiología , Diabetes Mellitus/terapia , Pancreatitis Crónica/complicaciones , Calidad de Vida , Glucemia , Diabetes Mellitus/metabolismo , Manejo de la Enfermedad , Humanos , Pancreatitis Crónica/metabolismo
3.
Front Plant Sci ; 9: 1155, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30174676

RESUMEN

Diverse mixtures of plant natural products play an important role in plant-herbivore-parasitoid interactions. In the pursuit of understanding these chemically-mediated interactions, we are often faced with the challenge of determining ecologically and biologically relevant compounds present in complex phytochemical mixtures. Using a network-based approach, we analyzed binned 1H-NMR data from 196 prepared mixtures of commonly studied secondary metabolites including alkaloids, amides, terpenes, iridoid glycosides, saponins, phenylpropanoids, flavonoids and phytosterols. The mixtures included multiple dimensions of chemical diversity, including molecular complexity, mixture complexity and differences in relative compound concentrations. This approach yielded modules of co-occurring chemical shifts that were correlated with specific compounds or common structural features shared across compounds. This approach was then applied to crude phytochemical extracts of 31 species in the phytochemically diverse tropical plant genus Piper (Piperaceae). Combining the activity of crude plant extracts in an array of bioassays with our 1H-NMR network approach, we identified a potential prenylated benzoic acid from these mixtures that exhibits antifungal properties and identified small structural differences that were potentially responsible for antifungal activity. In an intraspecific analysis of individual Piper kelleyi plants, we also found ontogenetic differences in chemistry that may affect natural plant enemies. In sum, this approach allowed us to characterize mixtures as useful network modules and to combine chemical and ecological datasets to identify biologically important compounds from crude extracts.

4.
Clin Endocrinol (Oxf) ; 84(2): 159-171, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25727561

RESUMEN

Vitamin D is a steroid hormone, which in active form binds to the vitamin D receptor. Expression of the vitamin D receptor in diverse cell types (pancreatic islet cells, myocytes, hepatocytes and adipocytes) raises the suspicion that vitamin D may be involved in multiple cellular processes, including the response to insulin. Insulin resistance is a characteristic feature of type 2 DM, and its attenuation may reduce the incidence of type 2 DM and cardiovascular disease. In observational studies, low serum 25-hydroxyvitamin D (25-OHD) concentrations are associated with an increased risk of type 2 DM. It has been suggested that increasing serum 25-OHD concentrations may have beneficial effects on glucose and insulin homeostasis. However, cross-sectional and interventional studies of vitamin D supplementation provide conflicting results and demonstrate no clear beneficial effect of vitamin D on insulin resistance. These studies are complicated by inclusion of different patient cohorts, different 25-OHD assays and different doses and preparations of vitamin D. Any possible association may be confounded by alterations in PTH, 1,25-dihydroxyvitamin D or tissue vitamin D concentrations. We identified 39 studies via MEDLINE and PUBMED. We review the evidence from 10 studies (seven observational and three interventional) examining vitamin D and type 2 DM incidence, and 29 studies (one prospective observational, 12 cross-sectional and 16 interventional trials) examining vitamin D and insulin resistance. Based on this data, it is not possible to state that vitamin D supplementation has any effect on type 2 DM incidence or on insulin resistance. Data from the multiple ongoing randomized controlled trials of vitamin D supplementation due to report over the next few years should help to clarify this area.

5.
Plant Signal Behav ; 7(6): 661-3, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22580708

RESUMEN

Plant cell walls are the most abundant biomaterials on Earth and serve a multitude of purposes in human society. These complex extracellular matrices are mainly composed of polysaccharides, including cellulose, hemicelluloses, and pectins, which cannot be cytologically examined using conventional techniques. Click chemistry, which exploits a bio-orthogonal cycloaddition reaction between alkynyl and azido groups, has proven to be useful for the metabolic incorporation and detection of modified sugars in polysaccharides in animals, fungi, and bacteria, but its use to interrogate the biosynthesis or dynamics of plant cell walls has not been previously reported. Recently, we found that an alkynylated analog of fucose can be metabolically incorporated into Arabidopsis thaliana cell walls and click labeled with fluorescent probes, facilitating imaging of cell wall carbohydrates. Despite the presence of fucose in several classes of wall polysaccharides, fucose-alkyne was primarily incorporated into rhamnogalacturonan-I, a type of pectin. Using timecourse and pulse-labeling experiments, we observed the dynamics of pectin delivery and reorganization in expanding cell walls. The use of click chemistry to investigate plant cell wall architecture should help bridge the gap between biochemical characterization of isolated cell wall components and an understanding of how those components interact in intact cell walls.


Asunto(s)
Arabidopsis/citología , Arabidopsis/metabolismo , Pared Celular/química , Química Clic/métodos , Imagenología Tridimensional , Pectinas/metabolismo , Fucosa/metabolismo , Humanos , Modelos Biológicos , Células Vegetales/metabolismo
6.
Proc Natl Acad Sci U S A ; 109(4): 1329-34, 2012 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-22232683

RESUMEN

Polysaccharide-rich cell walls are a defining feature of plants that influence cell division and growth, but many details of cell-wall organization and dynamics are unknown because of a lack of suitable chemical probes. Metabolic labeling using sugar analogs compatible with click chemistry has the potential to provide new insights into cell-wall structure and dynamics. Using this approach, we found that an alkynylated fucose analog (FucAl) is metabolically incorporated into the cell walls of Arabidopsis thaliana roots and that a significant fraction of the incorporated FucAl is present in pectic rhamnogalacturonan-I (RG-I). Time-course experiments revealed that FucAl-containing RG-I first localizes in cell walls as uniformly distributed punctae that likely mark the sites of vesicle-mediated delivery of new polysaccharides to growing cell walls. In addition, we found that the pattern of incorporated FucAl differs markedly along the developmental gradient of the root. Using pulse-chase experiments, we also discovered that the pectin network is reoriented in elongating root epidermal cells. These results reveal previously undescribed details of polysaccharide delivery, organization, and dynamics in cell walls.


Asunto(s)
Arabidopsis/fisiología , Pared Celular/metabolismo , Pared Celular/fisiología , Química Clic/métodos , Pectinas/metabolismo , Raíces de Plantas/citología , Alquinos/metabolismo , Epidermis/metabolismo , Fucosa/metabolismo , Hidrazinas , Microscopía Fluorescente , Pectinas/química , Raíces de Plantas/fisiología
7.
Biochemistry ; 50(31): 6633-41, 2011 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-21710975

RESUMEN

Plant nodulin-26 intrinsic proteins (NIPs) are members of the aquaporin superfamily that serve as multifunctional transporters of uncharged metabolites. In Arabidopsis thaliana, a specific NIP pore subclass, known as the NIP II proteins, is represented by AtNIP5;1 and AtNIP6;1, which encode channel proteins expressed in roots and leaf nodes, respectively, that participate in the transport of the critical cell wall nutrient boric acid. Modeling of the protein encoded by the AtNIP7;1 gene shows that it is a third member of the NIP II pore subclass in Arabidopsis. However, unlike AtNIP5;1 and AtNIP6;1 proteins, which form constitutive boric acid channels, AtNIP7;1 forms a channel with an extremely low intrinsic boric acid transport activity. Molecular modeling and molecular dynamics simulations of AtNIP7;1 suggest that a conserved tyrosine residue (Tyr81) located in transmembrane helix 2 adjacent to the aromatic arginine (ar/R) pore selectivity region stabilizes a closed pore conformation through interaction with the canonical Arg220 in ar/R region. Substitution of Tyr81 with a Cys residue, characteristic of established NIP boric acid channels, results in opening of the AtNIP7;1 pore that acquires a robust, transport activity for boric acid as well as other NIP II test solutes (glycerol and urea). Substitution of a Phe for Tyr81 also opens the channel, supporting the prediction from MD simulations that hydrogen bond interaction between the Tyr81 phenol group and the ar/R Arg may contribute to the stabilization of a closed pore state. Expression analyses show that AtNIP7;1 is selectively expressed in developing anther tissues of young floral buds of A. thaliana, principally in developing pollen grains of stage 9-11 anthers. Because boric acid is both an essential nutrient as well as a toxic compound at high concentrations, it is proposed that Tyr81 modulates transport and may provide an additional level of regulation for this transporter in male gametophyte development.


Asunto(s)
Acuaporinas/química , Proteínas de Arabidopsis/química , Arabidopsis/química , Ácidos Bóricos/química , Proteínas Portadoras/química , Regulación de la Expresión Génica de las Plantas , Polen/química , Tirosina/química , Sustitución de Aminoácidos/genética , Acuaporinas/biosíntesis , Acuaporinas/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , Ácidos Bóricos/metabolismo , Proteínas Portadoras/biosíntesis , Proteínas Portadoras/genética , Secuencia Conservada , Flores/química , Flores/genética , Flores/crecimiento & desarrollo , Familia de Multigenes , Especificidad de Órganos/genética , Fenilalanina/genética , Polen/crecimiento & desarrollo , Polen/metabolismo , Estructura Secundaria de Proteína/genética , Tirosina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA