Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 44: 65-73, 2018 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-29895494

RESUMEN

BACKGROUND: Mitochondrial dysfunction and reactive oxygen species (ROS) generation cause dopaminergic neurodegeneration in Parkinson's disease. The neuroprotective approach is a promising strategy to slow disease progression in Parkinson's disease. A standardized extract of Centella asiatica ECa233 has been previously reported to have pharmacological effects in the central nervous system. PURPOSE: This study aimed to determine the neuroprotective effect and mechanisms of ECa233 in rotenone-induced parkinsonism rats. METHODS: Rats were orally given either vehicle or ECa233 (10, 30 and 100 mg/kg) for 20 consecutive days. Rotenone (2.5 mg/kg i.p.) was given to parkinsonism (PD) and ECa-treated rats from day 15 to 20. Locomotor activity was recorded on day 1, 14, 17 and 20. Tyrosine-hydroxylase (TH) immunohistological staining was used to determine dopaminergic neurons in the substantia nigra and striatum. Furthermore, mitochondrial complex I activity, malondialdehyde (MDA) levels, superoxide dismutase (SOD) and catalase protein expression were measured in brain tissue. RESULTS: Rats receiving ECa233 30 mg/kg showed a significant increase in distances (p < 0.01) together with a higher number and intensity of dopaminergic neurons in the substantia nigra and striatum (p < 0.001) compared to PD rats. ECa233 (30 mg/kg) protected against mitochondrial complex I inhibition, decreased MDA levels (p < 0.05) and increased SOD (p < 0.01) and catalase (p < 0.05) expression. CONCLUSION: ECa233 can protect against rotenone-induced motor deficits and dopaminergic neuronal death. These effects are mediated through the protection of mitochondrial complex I activity, the effects of antioxidants and the enhancement of antioxidant enzyme expression.


Asunto(s)
Antiparkinsonianos/farmacología , Fármacos Neuroprotectores/farmacología , Trastornos Parkinsonianos/tratamiento farmacológico , Triterpenos/farmacología , Animales , Antioxidantes/metabolismo , Catalasa/metabolismo , Centella , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Masculino , Malondialdehído/metabolismo , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/metabolismo , Extractos Vegetales , Ratas Wistar , Rotenona/toxicidad , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Superóxido Dismutasa/metabolismo , Triterpenos/normas , Tirosina 3-Monooxigenasa/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-29849706

RESUMEN

GABAergic intercalated neurons of amygdala (ITCs) have recently been shown to be important in the suppression of fear-like behavior. Effects of ECa233 (a standardized extract of Centella asiatica), previously demonstrated anxiolytic activity, were then investigated on ITCs. Cluster of GABAergic neurons expressing fluorescence of GFP was identified in GAD67-GFP knock-in mice. We found that neurons of medial paracapsular ITC were GABAergic neurons exhibiting certain intrinsic electrophysiological properties similar to those demonstrated by ITC neurons at the same location in C57BL/6J mice. Therefore, we conducted experiments in both C57BL/6J mice and GAD67-GFP knock-in mice. Excitatory postsynaptic currents (EPSCs) were evoked by stimulation of the external capsule during the whole cell patch-clamp recordings from ITC neurons in brain slices. ECa233 was found to increase the EPSC peak amplitude in the ITC neurons by about 120%. The EPSCs in ITC neurons were completely abolished by the application of an AMPA receptor antagonist. Morphological assessment of the ITC neurons with biocytin demonstrated that most axons of the recorded neurons innervated the central nucleus of the amygdala (CeA). Therefore, it is highly likely that anxiolytic activity of ECa233 was mediated by increasing activation, via AMPA receptors, of excitatory synaptic input to the GABAergic ITC leading to depression of CeA neurons.

3.
Neurosci Res ; 79: 94-8, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24252619

RESUMEN

We investigated ascending somatosensory pathways in neonatally hemidecorticated rats. Injection of an anterograde tracer, biotinylated dextran amine (BDA), into the contralesional dorsal root ganglions revealed ipsilateral projections to the dorsal column nuclei (DCN) in hemidecorticated rats as well as in normal rats. Injection of BDA into the DCN on the same side revealed that while most axons projected to the contralateral thalamus, some axons were detected in the ipsilateral thalamus in hemidecorticated rats while such projections were rarely detected in normal rats. The results suggest that aberrant ipsilateral projections of DCN neurons contralateral to the lesion developed after the hemidecortication.


Asunto(s)
Tronco Encefálico/citología , Ganglios Espinales/citología , Tálamo/citología , Animales , Animales Recién Nacidos , Hemisferectomía , Vías Nerviosas , Ratas , Ratas Wistar
4.
BMC Complement Altern Med ; 13: 204, 2013 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-23915016

RESUMEN

BACKGROUND: In order to gain insight into neuroprotective effects of ECa 233, a standardized extract of Centella asiatica, previously demonstrated in animal models of memory impairment induced by transient global ischemia or intracerebroventricular injection of ß-amyloid, the effect of ECa 233 on neurite outgrowth of human IMR-32 neuroblastoma cell line was investigated. METHODS: Cells were seeded and incubated with various concentrations of ECa 233. Morphometric analysis was carried out by a measurement of the longest neurite growth of cells at 24 and 48 h. Contributing signaling pathways possibly involved were subsequently elucidated by western blot analysis. RESULTS: While ECa 233 had only limited effects on cell viability, it significantly enhanced neurite outgrowth of IMR-32 cells at the concentrations of 1-100 µg/ml. Western blot analysis revealed that ECa 233 significantly upregulated the level of activated ERK1/2 and Akt of the treated cells suggesting their involvement in the neuritogenic effect observed, which was subsequently verified by the finding that an addition of their respective inhibitors could reverse the effect of ECa 233 on these cells. CONCLUSIONS: The present study clearly demonstrated neurite outgrowth promoting activity of ECa 233. ERK1/2 and Akt signaling pathways seemed to account for the neurotrophic effect observed. In conjunction with in vivo neuroprotective effect of ECa 233 previously reported, the results obtained support further development of ECa 233 for clinical use in neuronal injury or neurodegenerative diseases.


Asunto(s)
Centella/química , Neuritas/efectos de los fármacos , Neuroblastoma/patología , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neuritas/enzimología , Neuritas/patología , Neuroblastoma/enzimología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA