Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Hum Mutat ; 27(7): 640-3, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16752391

RESUMEN

Methylmalonic aciduria (MMA-uria) is an autosomal recessive inborn error of amino acid metabolism, involving valine, threonine, isoleucine, and methionine. This organic aciduria may present in the neonatal period with life-threatening metabolic acidosis, hyperammonemia, feeding difficulties, pancytopenia, and coma. Most affected patients have mutations in the methylmalonyl-coenzyme A (methylmalonyl-CoA) mutase gene. Mildly affected patients may present in childhood with failure to thrive and recurrent attacks of metabolic acidosis. Both a higher residual activity of methylmalonyl-CoA mutase as well as the vitamin B12-responsive defects (cblA and cblB) may form the basis of the mild disorder. A few patients with moderate MMA-uria are known in whom no defect could be identified. Here we present a 16-year-old female patient with persisting moderate MMA-uria (approximately 50 mmol/mol creatinine). She was born to consanguineous Caucasian parents. Her fibroblast mutase activity was normal and no effect of vitamin B12 supplementation could be established. Reduced incorporation of 14C-propionate into macromolecules suggested a defect in the propionate-to-succinate pathway. We found a homozygous nonsense mutation (c.139C>T) in the methylmalonyl-CoA epimerase gene (MCEE), resulting in an early terminating signal (p.R47X). Both parents were heterozygous for this mutation; they were found to excrete normal amounts of methylmalonic acid (MMA). This is the first report of methylmalonyl-CoA epimerase deficiency, thereby unequivocally demonstrating the biochemical role of this enzyme in human metabolism.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/genética , Codón sin Sentido , Homocigoto , Ácido Metilmalónico/orina , Racemasas y Epimerasas/genética , Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Preescolar , Consanguinidad , Análisis Mutacional de ADN , Femenino , Humanos
3.
Am J Hum Genet ; 78(6): 1046-52, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16685654

RESUMEN

In this report, we describe the first known patient with a deficiency of sterol carrier protein X (SCPx), a peroxisomal enzyme with thiolase activity, which is required for the breakdown of branched-chain fatty acids. The patient presented with torticollis and dystonic head tremor as well as slight cerebellar signs with intention tremor, nystagmus, hyposmia, and azoospermia. Magnetic resonance imaging showed leukencephalopathy and involvement of the thalamus and pons. Metabolite analyses of plasma revealed an accumulation of the branched-chain fatty acid pristanic acid, and abnormal bile alcohol glucuronides were excreted in urine. In cultured skin fibroblasts, the thiolytic activity of SCPx was deficient, and no SCPx protein could be detected by western blotting. Mutation analysis revealed a homozygous 1-nucleotide insertion, 545_546insA, leading to a frameshift and premature stop codon (I184fsX7).


Asunto(s)
Proteínas Portadoras/genética , Demencia Vascular/diagnóstico , Distonía/diagnóstico , Polineuropatías/diagnóstico , Tortícolis/diagnóstico , Adulto , Proteínas Portadoras/sangre , Codón sin Sentido , Demencia Vascular/genética , Distonía/genética , Ácidos Grasos/sangre , Mutación del Sistema de Lectura , Glucurónidos/orina , Humanos , Imagen por Resonancia Magnética , Masculino , Polineuropatías/genética , Puente/patología , Síndrome , Tálamo/patología , Tortícolis/genética
4.
Mol Aspects Med ; 25(5-6): 521-32, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15363639

RESUMEN

The carnitine-acylcarnitine translocase (CACT) is one of the components of the carnitine cycle. The carnitine cycle is necessary to shuttle long-chain fatty acids from the cytosol into the intramitochondrial space where mitochondrial beta-oxidation of fatty acids takes place. The oxidation of fatty acids yields acetyl-coenzyme A (CoA) units, which may either be degraded to CO(2) and H(2)O in the citric acid cycle to produce ATP or converted into ketone bodies which occurs in liver and kidneys. Metabolic consequences of a defective CACT are hypoketotic hypoglycaemia under fasting conditions, hyperammonemia, elevated creatine kinase and transaminases, dicarboxylic aciduria, very low free carnitine and an abnormal acylcarnitine profile with marked elevation of the long-chain acylcarnitines. Clinical signs and symptoms in CACT deficient patients, are a combination of energy depletion and endogenous toxicity. The predominantly affected organs are brain, heart and skeletal muscle, and liver, leading to neurological abnormalities, cardiomyopathy and arrythmias, skeletal muscle damage and liver dysfunction. Most patients become symptomatic in the neonatal period with a rapidly progressive deterioration and a high mortality rate. However, presentations at a later age with a milder phenotype have also been reported. The therapeutic approach is the same as in other long-chain fatty acid disorders and includes intravenous glucose (+/- insulin) administration to maximally inhibit lipolysis and subsequent fatty acid oxidation during the acute deterioration, along with other measures such as ammonia detoxification, depending on the clinical features. Long-term strategy consists of avoidance of fasting with frequent meals and a special diet with restriction of long-chain fatty acids. Due to the extremely low free carnitine concentrations, carnitine supplementation is often needed. Acylcarnitine profiling in plasma is the assay of choice for the diagnosis at a metabolite level. However, since the acylcarnitine profile observed in CACT-deficient patients is identical to that in CPT2-deficient patients, definitive identification of CACT-deficiency in a certain patient requires determination of the activity of CACT. Subsequently, mutational analysis of the CACT gene can be performed. So far, 9 different mutations have been identified in the CACT gene.


Asunto(s)
Carnitina Aciltransferasas/deficiencia , Carnitina Aciltransferasas/metabolismo , Animales , Carnitina/metabolismo , Carnitina Aciltransferasas/genética , Homeostasis , Humanos , Mitocondrias/enzimología , Mitocondrias/metabolismo , Mutación/genética
5.
J Lipid Res ; 44(3): 560-6, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12562862

RESUMEN

The object of this study was to investigate whether the levels of cardiolipin in cultured skin fibroblasts of patients with Barth syndrome (BTHS) can be restored by addition of linoleic acid to growth media. To this end, fibroblasts from controls and BTHS patients were grown in the presence or absence of linoleic acid. High-performance liquid chromatography-electrospray ionization tandem mass spectrometry was used for quantitative and compositional analysis of cardiolipin. Incubation of cells from both BTHS and controls with different concentrations of linoleic acid led to a dose- and time-dependent increase of cardiolipin levels. The increased levels of cardiolipin in fibroblasts of BTHS patients after treatment with linoleic acid indicate that an increased amount of linoleic acid in the diet might be beneficial to BTHS patients.


Asunto(s)
Cardiolipinas/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/tratamiento farmacológico , Ácido Linoleico/farmacología , Adolescente , Células Cultivadas , Niño , Cromatografía Líquida de Alta Presión , Fibroblastos/patología , Enfermedades Genéticas Ligadas al Cromosoma X/dietoterapia , Humanos , Lactante , Ácido Linoleico/uso terapéutico , Fosfatidilgliceroles/análisis , Espectrometría de Masa por Ionización de Electrospray , Síndrome
6.
J Biol Chem ; 276(36): 33512-7, 2001 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-11431483

RESUMEN

epsilon-N-Trimethyllysine hydroxylase (EC ) is the first enzyme in the biosynthetic pathway of l-carnitine and catalyzes the formation of beta-hydroxy-N-epsilon-trimethyllysine from epsilon-N-trimethyllysine, a reaction dependent on alpha-ketoglutarate, Fe(2+), and oxygen. We purified the enzyme from rat kidney and sequenced two internal peptides by quadrupole-time-of-flight mass spectroscopy. The peptide sequences were used to search the Expressed Sequence Tag data base, which led to the identification of a rat cDNA of 1218 base pairs encoding a polypeptide of 405 amino acids with a calculated molecular mass of 47.5 kDa. Using the rat sequence we also identified the homologous cDNAs from human and mouse. Heterologous expression of both the rat and human cDNAs in COS cells confirmed that they encode epsilon-N-trimethyllysine hydroxylase. Subcellular fractionation studies revealed that the rat enzyme is localized exclusively in mitochondria. Expression studies in yeast indicated that the rat enzyme is synthesized as a 47.5-kDa precursor and subsequently processed to a mature protein of 43 kDa, presumably upon import in mitochondria. The Michaelis-Menten constants of the purified rat enzyme for trimethyllysine, alpha-ketoglutarate, and Fe(2+) were 1.1 mm, 109 microm, and 54 microm, respectively. Both gel filtration and blue native polyacrylamide gel electrophoresis analysis showed that the native enzyme has a mass of approximately 87 kDa, indicating that in rat epsilon-N-trimethyllysine hydroxylase is a homodimer.


Asunto(s)
Carnitina/biosíntesis , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética , Animales , Células COS , Línea Celular , Cromatografía en Gel , Clonación Molecular , ADN Complementario/metabolismo , Bases de Datos Factuales , Dimerización , Relación Dosis-Respuesta a Droga , Electroforesis en Gel de Poliacrilamida , Etiquetas de Secuencia Expresada , Humanos , Immunoblotting , Hierro/química , Ácidos Cetoglutáricos/química , Riñón/enzimología , Cinética , Masculino , Espectrometría de Masas , Ratones , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Péptidos/química , Ratas , Ratas Wistar , Fracciones Subcelulares/metabolismo , Transfección
7.
J Biol Chem ; 275(10): 7390-4, 2000 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-10702312

RESUMEN

The penultimate step in carnitine biosynthesis is mediated by gamma-trimethylaminobutyraldehyde dehydrogenase (EC 1.2.1.47), a cytosolic NAD(+)-dependent aldehyde dehydrogenase that converts gamma-trimethylaminobutyraldehyde into gamma-butyrobetaine. This enzyme was purified from rat liver, and two internal peptide fragments were sequenced by Edman degradation. The peptide sequences were used to search the Expressed Sequence Tag data base, which led to the identification of a rat cDNA containing an open reading frame of 1485 base pairs encoding a polypeptide of 494 amino acids with a calculated molecular mass of 55 kDa. Expression of the coding sequence in Escherichia coli confirmed that the cDNA encodes gamma-trimethylaminobutyraldehyde dehydrogenase. The previously identified human aldehyde dehydrogenase 9 (EC 1.2.1.19) has 92% identity with rat trimethylaminobutyraldehyde dehydrogenase and has been reported to convert substrates that resemble gamma-trimethylaminobutyraldehyde. When aldehyde dehydrogenase 9 was expressed in E. coli, it exhibited high trimethylaminobutyraldehyde dehydrogenase activity. Furthermore, comparison of the enzymatic characteristics of the heterologously expressed human and rat dehydrogenases with those of purified rat liver trimethylaminobutyraldehyde dehydrogenase revealed that the three enzymes have highly similar substrate specificities. In addition, the highest V(max)/K(m) values were obtained with gamma-trimethylaminobutyraldehyde as substrate. This indicates that human aldehyde dehydrogenase 9 is the gamma-trimethylaminobutyraldehyde dehydrogenase, which functions in carnitine biosynthesis.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Aldehído Deshidrogenasa/fisiología , Aldehídos/metabolismo , Carnitina/biosíntesis , Proteínas de Escherichia coli , Proteínas de Transporte de Monosacáridos , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/aislamiento & purificación , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/biosíntesis , ADN Complementario/aislamiento & purificación , Escherichia coli/genética , Humanos , Hígado/enzimología , Proteínas de Unión a Maltosa , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Ratas , Proteínas Recombinantes de Fusión/biosíntesis , Especificidad por Sustrato
8.
J Lipid Res ; 40(12): 2244-54, 1999 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-10588950

RESUMEN

Phytanoyl-CoA hydroxylase (PhyH) catalyzes the conversion of phytanoyl-CoA to 2-hydroxyphytanoyl-CoA, which is the first step in the phytanic acid alpha-oxidation pathway. Recently, several studies have shown that in humans, phytanic acid alpha-oxidation is localized in peroxisomes. In rat, however, the alpha-oxidation pathway has been reported to be mitochondrial. In order to clarify this differential subcellular distribution, we have studied the rat PhyH protein. We have purified PhyH from rat liver to apparent homogeneity as judged by SDS-PAGE. Sequence analysis of two PhyH peptide fragments allowed cloning of the rat PHYH cDNA encoding a 38. 6 kDa protein. The deduced amino acid sequence revealed strong homology to human PhyH including the presence of a peroxisome targeting signal type 2 (PTS2). Heterologous expression of rat PHYH in Saccharomyces cerevisiae yielded a 38.6 kDa protein whereas the PhyH purified from rat liver had a molecular mass of 35 kDa. This indicates that PhyH is probably processed in rat by proteolytic removal of a leader sequence containing the PTS2. This type of processing has been reported in several other peroxisomal proteins that contain a PTS2. Subcellular localization studies using equilibrium density centrifugation showed that PhyH is indeed a peroxisomal protein in rat. The finding that PhyH is peroxisomal in both rat and humans provides strong evidence against the concept of a differential subcellular localization of phytanic acid alpha-oxidation in rat and human.


Asunto(s)
Hígado/enzimología , Oxigenasas de Función Mixta/aislamiento & purificación , Secuencia de Aminoácidos , Animales , Radioisótopos de Carbono , Centrifugación por Gradiente de Densidad , Clonación Molecular , ADN Complementario/biosíntesis , Humanos , Ácidos Cetoglutáricos/metabolismo , Masculino , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Datos de Secuencia Molecular , Oxidación-Reducción , Peroxisomas/enzimología , Ácido Fitánico/metabolismo , Ratas , Ratas Wistar , Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Levaduras
10.
Biochem Biophys Res Commun ; 263(1): 213-8, 1999 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-10486279

RESUMEN

To study the putative role of human carnitine octanoyltransferase (COT) in the beta-oxidation of branched-chain fatty acids, we identified and cloned the cDNA encoding human COT and expressed it in the yeast Saccharomyces cerevisiae. Enzyme activity measurements showed that COT efficiently converts one of the end products of the peroxisomal beta-oxidation of pristanic acid, 4, 8-dimethylnonanoyl-CoA, to its corresponding carnitine ester. Production of the carnitine ester of this branched/medium-chain acyl-CoA within the peroxisome is required for its transport to the mitochondrion where further beta-oxidation occurs. In contrast, 4, 8-dimethylnonanoyl-CoA is not a substrate for carnitine acetyltransferase, another acyltransferase localized in peroxisomes, which catalyzes the formation of carnitine esters of the other products of pristanic acid beta-oxidation, namely acetyl-CoA and propionyl-CoA. Our results shed new light on the function of COT in fatty acid metabolism and point to a crucial role of COT in the beta-oxidation of branched-chain fatty acids.


Asunto(s)
Carnitina Aciltransferasas/genética , Carnitina Aciltransferasas/metabolismo , Ácidos Grasos/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Bovinos , Clonación Molecular , Cartilla de ADN/genética , ADN Complementario/genética , Expresión Génica , Humanos , Técnicas In Vitro , Microcuerpos/metabolismo , Datos de Secuencia Molecular , Oxidación-Reducción , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Especificidad de la Especie
11.
Hum Genet ; 105(1-2): 157-61, 1999.
Artículo en Inglés | MEDLINE | ID: mdl-10480371

RESUMEN

Systemic carnitine deficiency is a potentially lethal, autosomal recessive disorder characterized by cardiomyopathy, myopathy, recurrent episodes of hypoketotic hypoglycemia, hyperammonemia, and failure to thrive. This form of carnitine deficiency is caused by a defect in the active cellular uptake of carnitine, and the gene encoding the high affinity carnitine transporter OCTN2 has recently been shown to be mutated in patients suffering from this disorder. Here, we report the underlying molecular defect in three unrelated patients. Two patients were homozygous for the same missense mutation 632A-->G, which changes the tyrosine at amino acid position 211 into a cysteine (Y211C). The third patient was homozygous for a nonsense mutation, 844C-->T, which converts the arginine at amino acid position 282 into a stop codon (R282X). Reintroduction of wild-type OCTN2 cDNA into fibroblasts of the three patients by transient transfection restored the cellular carnitine uptake, confirming that mutations in OCTN2 are the cause of systemic carnitine deficiency.


Asunto(s)
Carnitina/deficiencia , Carnitina/genética , Proteínas Portadoras/genética , Proteínas de la Membrana/genética , Proteínas de Transporte de Catión Orgánico , Mutación Puntual , Secuencia de Bases , Preescolar , Clonación Molecular , ADN Complementario/análisis , Femenino , Fibroblastos , Homocigoto , Humanos , Lactante , Masculino , Datos de Secuencia Molecular , Fenotipo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Miembro 5 de la Familia 22 de Transportadores de Solutos , Transfección
12.
Biochem Biophys Res Commun ; 250(2): 506-10, 1998 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-9753662

RESUMEN

gamma-Butyrobetaine hydroxylase (EC 1.14.11.1) is the last enzyme in the biosynthetic pathway of L-carnitine and catalyzes the formation of L-carnitine from gamma-butyrobetaine, a reaction dependent on alpha-ketoglutarate, Fe2+, and oxygen. We report the purification of the protein from rat liver to apparent homogeneity, which allowed N-terminal sequencing using Edman degradation. The obtained amino acid sequence was used to screen the expressed sequence tag database and led to the identification of a human cDNA containing an open reading frame of 1161 base pairs encoding a polypeptide of 387 amino acids with a predicted molecular weight of 44.7 kDa. Heterologous expression of the open reading frame in the yeast Saccharomyces cerevisiae confirmed that the cDNA encodes the human gamma-butyrobetaine hydroxylase. Northern blot analysis showed gamma-butyrobetaine hydroxylase expression in kidney (high), liver (moderate), and brain (very low), while no expression could be detected in the other investigated tissues.


Asunto(s)
Carnitina/biosíntesis , ADN Complementario/genética , Oxigenasas de Función Mixta/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , ADN Complementario/aislamiento & purificación , Humanos , Oxigenasas de Función Mixta/metabolismo , Datos de Secuencia Molecular , Ratas , Saccharomyces cerevisiae , gamma-Butirobetaína Dioxigenasa
13.
Mol Cell Biol ; 18(7): 4324-36, 1998 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-9632816

RESUMEN

Rat PEX12 cDNA was isolated by functional complementation of peroxisome deficiency of a mutant CHO cell line, ZP109 (K. Okumoto, A. Bogaki, K. Tateishi, T. Tsukamoto, T. Osumi, N. Shimozawa, Y. Suzuki, T. Orii, and Y. Fujiki, Exp. Cell Res. 233:11-20, 1997), using a transient transfection assay and an ectopic, readily visible marker, green fluorescent protein. This cDNA encodes a 359-amino-acid membrane protein of peroxisomes with two transmembrane segments and a cysteine-rich zinc finger, the RING motif. A stable transformant of ZP109 with the PEX12 was morphologically and biochemically restored for peroxisome biogenesis. Pex12p was shown by expression of bona fide as well as epitope-tagged Pex12p to expose both N- and C-terminal regions to the cytosol. Fibroblasts derived from patients with the peroxisome deficiency Zellweger syndrome of complementation group III (CG-III) were also complemented for peroxisome biogenesis with PEX12. Two unrelated patients of this group manifesting peroxisome deficiency disorders possessed homozygous, inactivating PEX12 mutations: in one, Arg180Thr by one point mutation, and in the other, deletion of two nucleotides in codons for 291Asn and 292Ser, creating an apparently unchanged codon for Asn and a codon 292 for termination. These results indicate that the gene encoding peroxisome assembly factor Pex12p is a pathogenic gene of CG-III peroxisome deficiency. Moreover, truncation and site mutation studies, including patient PEX12 analysis, demonstrated that the cytoplasmically oriented N- and C-terminal parts of Pex12p are essential for biological function.


Asunto(s)
Proteínas de la Membrana/genética , Mutación , Síndrome de Zellweger/genética , Dedos de Zinc , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Células CHO , Línea Celular , Línea Celular Transformada , Clonación Molecular , Cricetinae , Citosol , ADN Complementario , Fibroblastos , Humanos , Microcuerpos/metabolismo , Datos de Secuencia Molecular , Mutagénesis , Trastorno Peroxisomal/veterinaria , Ratas , Homología de Secuencia de Aminoácido
14.
Biochem Biophys Res Commun ; 243(2): 368-71, 1998 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-9480815

RESUMEN

Ten complementation groups of generalized peroxisome biogenesis disorders (PBD), (excluding rhizomelic chondrodysplasia punctata) have been identified using complementation analysis. Four of the genes involved have been identified using two different methods of (1) genetic functional complementation of peroxisome deficient CHO cell mutants and (2) homology searches for human dbEST, based on yeast genes involved in peroxisome biogenesis (PEX genes). We report here the first identification of a new complementation group which is genetically different from peroxisome deficient CHO mutants. There were no complementations by the human PEX 13 gene. The nature of the related gene is being investigated.


Asunto(s)
Prueba de Complementación Genética , Proteínas de la Membrana/genética , Trastorno Peroxisomal/genética , Animales , Células CHO , Catalasa/inmunología , Mapeo Cromosómico , Clonación Molecular , Cricetinae , ADN Complementario/genética , Fibroblastos , Técnica del Anticuerpo Fluorescente , Humanos , Lactante , Masculino , Fenotipo , Transfección/genética
15.
Biochim Biophys Acta ; 1215(3): 347-50, 1994 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-7811722

RESUMEN

Mitochondrial trifunctional protein is a newly identified enzyme involved in mitochondrial fatty acid beta-oxidation harbouring long-chain enoyl-CoA hydratase, long-chain 3-hydroxyacyl-CoA dehydrogenase and long-chain 3-ketothiolase activity. Over the last few years, we identified more than 26 patients with a deficiency in long-chain 3-hydroxyacyl-CoA dehydrogenase. In order to identify the molecular basis for the deficiency found in these patients, we sequenced the cDNAs encoding the alpha- and beta-subunits which revealed one G-->C mutation at nucleotide position 1528 in the 3-hydroxyacyl-CoA dehydrogenase encoding region of the alpha-subunit. The single base change results in the substitution of a glutamate for a glutamine at amino acid position 510. The base substitution creates a PstI restriction site. Using RFLP, we found that in 24 out of 26 unrelated patients only the C1528 was expressed. The other two patients were heterozygous for this mutation. This mutation was not found in 55 different control subjects. This indicates a high frequency for this mutation in long-chain 3-hydroxyacyl-CoA dehydrogenase deficient patients.


Asunto(s)
3-Hidroxiacil-CoA Deshidrogenasas/deficiencia , Mitocondrias/enzimología , 3-Hidroxiacil-CoA Deshidrogenasas/genética , Secuencia de Aminoácidos , Secuencia de Bases , ADN Complementario/química , Ácidos Grasos/metabolismo , Humanos , 3-Hidroxiacil-CoA Deshidrogenasa de Cadena Larga , Datos de Secuencia Molecular , Mutación , Polimorfismo de Longitud del Fragmento de Restricción , Alineación de Secuencia
16.
Biochem Biophys Res Commun ; 152(3): 1083-9, 1988 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-3377768

RESUMEN

We have recently identified four complementation groups in fibroblasts from patients deficient in peroxisomes. Here we describe a kinetic analysis of the complementation process. The kinetics of peroxisome assembly was assessed in heterokaryons of complementary cell lines by measuring the rate of incorporation of catalase, initially present in the cytosol, into particles. In two combinations of cell lines assembly was rapid and insensitive to cycloheximide. Thus the components required for peroxisome assembly must have been present in the parental cell lines, at least one of which presumably contained peroxisomal ghosts. In three other combinations of cell lines assembly of peroxisomes was slow and sensitive to cycloheximide.


Asunto(s)
Microcuerpos/ultraestructura , Encefalopatías , Catalasa/metabolismo , Fusión Celular , Línea Celular , Cicloheximida/farmacología , Fibroblastos , Humanos , Enfermedades Renales , Hepatopatías , Microcuerpos/efectos de los fármacos , Microcuerpos/enzimología , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA