Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FASEB J ; 38(7): e23581, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38551642

RESUMEN

Human DEAD/H box RNA helicase DDX6 acts as an oncogene in several different types of cancer, where it participates in RNA processing. Nevertheless, the role of DDX6 in pancreatic cancer (PC), together with the underlying mechanism, has yet to be fully elucidated. In the present study, compared with adjacent tissues, the level of DDX6 was abnormally increased in human PC tissues, and this increased level of expression was associated with poor prognosis. Furthermore, the role of DDX6 in PC was investigated by overexpressing or silencing the DDX6 in the PC cell lines, SW1990 and PaTu-8988t. A xenograft model was established by injecting nude mice with either DDX6-overexpressing or DDX6-silenced SW1990 cells. DDX6 overexpression promoted the proliferation and cell cycle transition, inhibited the cell apoptosis of PC cells, and accelerated tumor formation, whereas DDX6 knockdown elicited the opposite effects. DDX6 exerted positive effects on PC. RNA immunoprecipitation assay showed that DDX6 bound to kinesin family member C1 (KIFC1) mRNA, which was further confirmed by RNA pull-down assay. These results suggested that DDX6 positively regulated the expression of KIFC1. KIFC1 overexpression enhanced the proliferative capability of PC cells with DDX6 knockdown and inhibited their apoptosis. By contrast, DDX6 overexpression reversed the inhibitory effect of KIFC1 silencing on tumor proliferation. Subsequently, the transcription factor Yin Yang 1 (YY1) was shown to negatively regulate DDX6 at both the mRNA and protein levels. Dual-luciferase reporter assay verified that YY1 targeted the promoter of DDX6 and inhibited its transcription. High expression levels of YY1 decreased the proliferation of PC cells and promoted cell apoptosis, although these effects were reversed by DDX6 overexpression. Taken together, YY1 may target the DDX6/KIFC1 axis, thereby negatively regulating its expression, leading to an inhibitory effect on pancreatic tumor.


Asunto(s)
ARN Helicasas DEAD-box , MicroARNs , Neoplasias Pancreáticas , Factor de Transcripción YY1 , Animales , Humanos , Ratones , Línea Celular Tumoral , Proliferación Celular , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , MicroARNs/genética , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas/metabolismo , ARN Mensajero , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo
2.
Sci Data ; 10(1): 873, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057329

RESUMEN

Lithocarpus, with >320 species, is the second largest genus of Fagaceae. However, the lack of a reference genome limits the molecular biology and functional study of Lithocarpus species. Here, we report the chromosome-scale genome assembly of sweet tea (Lithocarpus polystachyus Rehder), the first Lithocarpus species to be sequenced to date. Sweet tea has a 952-Mb genome, with a 21.4-Mb contig N50 value and 98.6% complete BUSCO score. In addition, the per-base consensus accuracy and completeness of the genome were estimated at 60.6 and 81.4, respectively. Genome annotation predicted 37,396 protein-coding genes, with repetitive sequences accounting for 64.2% of the genome. The genome did not undergo whole-genome duplication after the gamma (γ) hexaploidy event. Phylogenetic analysis showed that sweet tea diverged from the genus Quercus approximately at 59 million years ago. The high-quality genome assembly and gene annotation resources enrich the genomics of sweet tea, and will facilitate functional genomic studies in sweet tea and other Fagaceae species.


Asunto(s)
Genoma de Planta , Quercus , Cromosomas , Anotación de Secuencia Molecular , Filogenia , Quercus/genética ,
3.
DNA Res ; 30(4)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37228100

RESUMEN

Plantago is a major genus belonging to the Plantaginaceae family and is used in herbal medicine, functional food, and pastures. Several Plantago species are also characterized by their global distribution, but the mechanism underpinning this is not known. Here, we present a high-quality, chromosome-level genome assembly of Plantago major L., a species of Plantago, by incorporating Oxford Nanopore sequencing and Hi-C technologies. The genome assembly size was approximately 671.27 Mb with a contig N50 length of 31.30 Mb. 31,654 protein-coding genes were identified from the genome. Evolutionary analysis showed that P. major diverged from other Lamiales species at ~62.18 Mya and experienced two rounds of WGD events. Notably, many gene families related to plant acclimation and adaptation expanded. We also found that many polyphenol biosynthesis genes showed high expression patterns in roots. Some amino acid biosynthesis genes, such as those involved in histidine synthesis, were highly induced under metal (Ni) stress that led to the accumulation of corresponding metabolites. These results suggest persuasive arguments for the global distribution of P. major through multiscale analysis. Decoding the P. major genome provides a valuable genomic resource for research on dissecting biological function, molecular evolution, taxonomy, and breeding.


Asunto(s)
Plantaginaceae , Plantago , Plantago/genética , Plantaginaceae/genética , Fitomejoramiento , Cromosomas , Aclimatación , Suelo , Filogenia
4.
Front Plant Sci ; 13: 923442, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720568

RESUMEN

Chrysanthemum (Chrysanthemum morifolium Ramat) is an important floricultural crop and medicinal herb. Modern chrysanthemum cultivars have complex genetic backgrounds because of multiple cycles of hybridization, polyploidization, and prolonged cultivation. Understanding the genetic background and hybrid origin of modern chrysanthemum cultivars can provide pivotal information for chrysanthemum genetic improvement and breeding. By now, the origin of cultivated chrysanthemums remains unclear. In this study, 36 common chrysanthemum cultivars from across the world and multiple wild relatives were studied to identify the maternal donor of modern chrysanthemum. Chloroplast (cp) genomes of chrysanthemum cultivars were assembled and compared with those of the wild relatives. The structure of cp genomes was highly conserved among cultivars and wild relatives. Phylogenetic analyses based on the assembled cp genomes showed that all chrysanthemum cultivars grouped together and shared 64 substitutions that were distinct from those of their wild relatives. These results indicated that a diverged lineage of the genus Chrysanthemum, which was most likely an extinct or un-sampled species/population, provided a maternal source for modern cultivars. These findings provide important insights into the origin of chrysanthemum cultivars, and a source of valuable genetic markers for chrysanthemum breeding programs.

5.
IEEE Trans Biomed Eng ; 68(7): 2289-2300, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33646944

RESUMEN

OBJECTIVE: As a newly developed technique, focused microwave breast hyperthermia (FMBH) can provide accurate and cost-effective treatment of breast tumors with low side effect. A clinically feasible FMBH system requires a guidance technique to monitor the microwave power distribution in the breast. Compressive thermoacoustic tomography (CTT) is a suitable guidance approach for FMBH, which is more cost-effective than MRI. However, no experimental validation based on a realized FMBH-CTT system has been reported, which greatly hinders the further advancement of this novel approach. METHODS: We developed a preclinical system prototype for the FMBH-CTT technique, containing a microwave phased antenna array, a microwave source, an ultrasound transducer array and associated data acquisition module. RESULTS: Experimental results employing homogeneous and inhomogeneous breast-mimicking phantoms demonstrate that the CTT technique can offer reliable guidance for the entire process of the FMBH. In addition, small phase noises do not deteriorate the overall performance of the system prototype. CONCLUSION: The realized preclinical FMBH-CTT system prototype is capable for noninvasive, accurate and low-side-effect breast tumor treatment with effective guidance. SIGNIFICANCE: The experimentally validated FMBH-CTT system prototype provides a feasible paradigm for CTT guided FMBH, establishes a practical platform for future improvement of this technique, and paves the way for potential clinical translation.


Asunto(s)
Neoplasias de la Mama , Hipertermia Inducida , Mama/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/terapia , Femenino , Humanos , Hipertermia , Imagen por Resonancia Magnética , Microondas , Fantasmas de Imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA