Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Toxicol Mech Methods ; 33(1): 65-72, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35655407

RESUMEN

As a traditional Chinese medicine, strychnos alkaloids have wide effects including antitumor, analgesic, and anti-inflammatory. However, the therapeutic window of strychnos alkaloids is quite narrow due to potential neurotoxicity. Therefore, it is necessary to explore some efficient biomarkers to identify and predict the neurotoxicity induced by strychnos alkaloids and find a therapy to prevent the neurotoxicity of strychnos alkaloids. Based on the previous studies of our research team, 21 endogenous substances related to neurotoxicity were monitored in rats' serum with HPLC-MS/MS and ELISA. Starting from these fundamentals, a Lasso-Logistic regression model was used to select efficient biomarkers from 21 endogenous substances to predict brain injury and verify the neuroprotective effect of peonies. Under the processing of the Lasso-Logistic regression model, 12 biomarkers were identified from 21 endogenous substances to predict the neurotoxicity induced by strychnos alkaloids. At the same time, the neuroprotective effect of peonies was further confirmed by evaluating the level of 12 biomarkers. The results indicated that the development of the Lasso-Logistic regression model would provide a new, simple and efficient method for the prediction and diagnosis of the neurotoxicity induced by strychnos alkaloids.


Asunto(s)
Alcaloides , Fármacos Neuroprotectores , Strychnos , Ratas , Animales , Espectrometría de Masas en Tándem , Fármacos Neuroprotectores/farmacología , Modelos Logísticos , Biomarcadores
2.
Phytomedicine ; 75: 153247, 2020 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-32502823

RESUMEN

BACKGROUND: Advanced glycation end products (AGEs) deposition causes inflammatory injury in osteoblasts and contributes to diabetic osteoporosis. The receptor for advanced glycation end product/mitogen-activated protein kinase pathway (RAGE/MAPK) signaling pathway is closely linked to the pathogenesis of diabetic osteoporosis. Timosaponin AIII, a steroidal saponin isolated from Anemarrhena asphodeloides Bunge (Asparagaceae), shows anti-inflammatory and anti-osteoporosis effects. PURPOSE: The present study was aimed to investigate the therapeutic effects of timosaponin AIII on diabetic osteoporosis and whether its effect is dependent on protecting osteoblasts against AGEs-induced injury via RAGE/MAPK signaling suppression. METHODS: An alloxan-induced diabetic osteoporosis zebrafish model was applied to investigate the effects of timosaponin AIII in vivo, and alendronate was used as a positive control. Moreover, related mechanisms were explored in primary rat osteoblasts. Molecular docking was applied to investigate the interactions between timosaponin AIII and RAGE. RESULTS: Timosaponin AIII treatment reversed alloxan-induced reduction in the mineralized area of the larvae head skeleton, accompanied by a decreased level of triglyceride and total cholesterol in the zebrafish. Additionally, AGEs significantly influenced RAGE expression, alkaline phosphatase activity, interleukin 1ß expression, interleukin 6 expression, and tumor necrosis factor-α expression, and increased cell apoptosis. Timosaponin AIII significantly downregulated AGEs-induced interleukin 1ß, interleukin 6, and tumor necrosis factor-α levels, and upregulated alkaline phosphatase and osteocalcin levels. Timosaponin AIII also significantly reduced the expression of RAGE and had additive effects on downstream P38, extracellular signal-regulated kinase and c-Jun N-terminal kinase in AGEs-induced osteoblast. Molecular docking predicted that hydrogen and hydrophobic interactions occurred between timosaponin AIII and RAGE. CONCLUSION: These data clarified that timosaponin AIII attenuates diabetic osteoporosis via a novel mechanism involved suppressing the RAGE/MAPK signaling pathway. Our finding highlights the potential value of timosaponin AIII as an anti-diabetic osteoporosis agent.

3.
J Sep Sci ; 40(16): 3188-3195, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28631877

RESUMEN

Baidianling Capsule, which is made from 16 Chinese herbs, has been widely used for treating vitiligo clinically. In this study, the sensitive and rapid method has been developed for the analysis of chemical components in Baidianling Capsule by gas chromatography-mass spectrometry in combination with retention indices and high-performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry. Firstly, a total of 110 potential volatile compounds obtained from different extraction procedures including alkanes, alkenes, alkynes, ketones, ethers, aldehydes, alcohols, phenols, organic acids, esters, furans, pyrrole, acid amides, heterocycles, and oxides were detected from Baidianling Capsule by gas chromatography-mass spectrometry, of which 75 were identified by mass spectrometry in combination with the retention index. Then, a total of 124 components were tentatively identified by high-performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry. Fifteen constituents from Baidianling Capsule were accurately identified by comparing the retention times with those of reference compounds, others were identified by comparing the retention times and mass spectrometry data, as well as retrieving the reference literature. This study provides a practical strategy for rapidly screening and identifying the multiple constituents of a complex traditional Chinese medicine.


Asunto(s)
Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/análisis , Análisis de Fourier , Cromatografía de Gases y Espectrometría de Masas , Fitoquímicos/análisis , Ciclotrones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA