Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Biol Macromol ; 268(Pt 1): 131701, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38643920

RESUMEN

Mulberry (Latin name "Morus alba L.") is a perennial deciduous tree in the family of Moraceae, widely distributed around the world. In China, mulberry is mainly distributed in the south and the Yangtze River basin. Its leaves can be harvested 3-6 times a year, which has a great resource advantage. Mulberry leaves are regarded as the homology of medicine and food traditional Chinese medicine (TCM). Polysaccharides, as its main active ingredients, have various effects, such as antioxidant, hypoglycemic, hepatoprotective, and immunomodulatory. This review summarizes the research progress in the extraction, purification, structural characterization, and structure-function relationship of polysaccharides from mulberry leaves in the last decade, hoping to provide a reference for the subsequent development and market application of polysaccharides from mulberry leaves.


Asunto(s)
Morus , Hojas de la Planta , Polisacáridos , Morus/química , Hojas de la Planta/química , Polisacáridos/química , Polisacáridos/farmacología , Polisacáridos/aislamiento & purificación , Relación Estructura-Actividad , Antioxidantes/farmacología , Antioxidantes/química , Humanos , Animales , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Extractos Vegetales/química , Extractos Vegetales/farmacología
2.
J Sci Food Agric ; 103(8): 4131-4142, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36565301

RESUMEN

BACKGROUND: Traditional soy protein gel products such as tofu, formed from calcium sulfate or magnesium chloride, have poor textural properties and water retention capacity. Soy glycinin (SG) is the main component affecting the gelation of soy protein and can be cross-linked with polysaccharides, such as sugar beet pectin (SBP), and can be modified by changing system factors (e.g., pH) to improve the gel's properties. Soy glycinin/sugar beet pectin (SG/SBP) complex double network gels were prepared under weakly acidic conditions using laccase cross-linking and heat treatment. The structural changes in SG and the properties of complex gels were investigated. RESULTS: Soy glycinin exposed more hydrophobic groups and free sulfhydryl groups at pH 5.0. Under the action of laccase cross-linking, SBP could promote the unfolding of SG tertiary structures. The SG/SBP complex gels contained 46.77% ß-fold content and had good gelling properties in terms of hardness 290.86 g, adhesiveness 26.87, and springiness 96.70 mm at pH 5.0. The T22 relaxation time had the highest peak, and magnetic resonance imaging (MRI) showed that the gel had even water distribution. Scanning electron microscopy (SEM) and confocal scanning laser microscopy (CLSM) indicated that the SG/SBP complex network structure was uniform, and the pore walls were thicker and contained filamentous structures. CONCLUSION: Soy glycinin/ sugar beet pectin complex network gels have good water-holding, rheological, and textural properties at pH 5.0. The properties of soy protein gels can be improved by binding to polysaccharides, with laccase cross-linked, and adjusting the pH of the solution. © 2022 Society of Chemical Industry.


Asunto(s)
Beta vulgaris , Pectinas , Pectinas/química , Proteínas de Soja/química , Beta vulgaris/química , Lacasa/química , Polisacáridos/metabolismo , Catálisis , Geles/química , Agua/metabolismo , Azúcares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA