Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 768: 144515, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33453542

RESUMEN

Dinoflagellate blooming periods are paradoxically characterized by high biomass growth rate and low ambient dissolved CO2 and inorganic nutrients, however, the underlying mechanisms linking cell growth and nutrient acquisition are poorly understood. Here, we compared metaproteomes of non-bloom, mid-blooming and late-blooming cells of a marine dinoflagellate Prorocentrum donghaiense. Cell division, metabolism of carbon, nitrogen, phosphorus, lipid, porphyrin and chlorophyll were more active in blooming cells than in non-bloom cells. Up-regulation of carbonic anhydrase, ribulose-1,5-bisphosphate carboxylase/oxygenase II, and C4-cycle proteins enhanced CO2 assimilation of P. donghaiense. Proteins participating in external organic nutrient acquisition and conversion, such as transporters for fatty acids, peptides and amino acids, external- and internal-phosphomonoester hydrolase, and diverse peptidases and amino acid transaminases, exhibited higher expression in blooming cells relative to non-bloom cells. Interestingly, dissolved organic nitrogen (DON) such as urea and aspartate significantly down-regulated expression and activity of carbon assimilation proteins except for RuBisCO form II, suggesting that DON provided sufficient carbon source which reduced the need to concentrate internal CO2. This study demonstrates that coupling of efficient CO2 assimilation with DON utilization are essential for bloom maintenance of P. donghaiense, and future efforts should be devoted to dissolved organic nutrients for prevention and management of dinoflagelllate blooms.


Asunto(s)
Dinoflagelados , Dióxido de Carbono , Floraciones de Algas Nocivas , Nutrientes , Fósforo
2.
Sci Total Environ ; 692: 1037-1047, 2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31539936

RESUMEN

Dinoflagellates represent major contributors to the harmful algal blooms in the oceans. Phosphorus (P) is an essential macronutrient that limits the growth and proliferation of dinoflagellates. However, the specific molecular mechanisms involved in the P acclimation of dinoflagellates remain poorly understood. Here, the transcriptomes of a dinoflagellate Prorocentrum donghaiense grown under inorganic P-replete, P-deficient, and inorganic- and organic P-resupplied conditions were compared. Genes encoding low- and high-affinity P transporters were significantly down-regulated in the P-deficient cells, while organic P utilization genes were significantly up-regulated, indicating strong ability of P. donghaiense to utilize organic P. Up-regulation of membrane phospholipid catabolism and endocytosis provided intracellular and extracellular organic P for the P-deficient cells. Physiological responses of P. donghaiense to dissolved inorganic P (DIP) or dissolved organic P (DOP) resupply exhibited insignificant differences. However, the corresponding transcriptomic responses significantly differed. Although the expression of multiple genes was significantly altered after DIP resupplementation, few biological processes varied. In contrast, various metabolic processes associated with cell growth, such as translation, transport, nucleotide, carbohydrate and lipid metabolisms, were significantly altered in the DOP-resupplied cells. Our results indicated that P. donghaiense evolved diverse DOP utilization strategies to adapt to low P environments, and that DOPs might play critical roles in the P. donghaiense bloom formation.


Asunto(s)
Dinoflagelados/fisiología , Fósforo/metabolismo , Contaminantes del Agua/metabolismo , Regulación hacia Abajo , Floraciones de Algas Nocivas , Océanos y Mares , Transcriptoma , Regulación hacia Arriba
3.
Appl Environ Microbiol ; 85(19)2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31375486

RESUMEN

Phytoplankton blooms are natural phenomena in the ocean, which are the results of rapid cell growth of some phytoplankton species in a unique environment. However, little is known about the molecular events occurring during the bloom. Here, we compared metaproteomes of two phytoplankton Heterosigma akashiwo and Prorocentrum donghaiense in the coastal East China Sea. H. akashiwo and P. donghaiense accounted for 7.82% and 4.74% of the phytoplankton community protein abundances in the nonbloom sample, whereas they contributed to 60.13% and 78.09%, respectively, in their individual blooming samples. Compared with P. donghaiense, H. akashiwo possessed a significantly higher abundance of light-harvesting complex proteins, carbonic anhydrasem and RuBisCO. The blooming H. akashiwo cells expressed more proteins related to external nutrient acquisition, such as bicarbonate transporter SLC4, ammonium transporter, nitrite transporter, and alkaline phosphatase, while the blooming P. donghaiense cells highly expressed proteins related to extra- and intracellular organic nutrient utilization, such as amino acid transporter, 5'-nucleotidase, acid phosphatase, and tripeptidyl-peptidase. The strong capabilities of light harvesting, as well as acquisition and assimilation of inorganic carbon, nitrogen, and phosphorus, facilitated the formation of the H. akashiwo bloom under the high turbidity and inorganic nutrient-sufficient condition, whereas the competitive advantages in organic nutrient acquisition and reallocation guaranteed the occurrence of the P. donghaiense bloom under the inorganic nutrient-insufficient condition. This study highlights the power of metaproteomics for revealing the underlying molecular behaviors of different coexisting phytoplankton species and advances our knowledge on the formation of phytoplankton blooms.IMPORTANCE A deep understanding of the mechanisms driving bloom formation is a prerequisite for effective bloom management. Metaproteomics was applied in this study to reveal the adaptive and responsive strategies of two coexisting phytoplankton species, H. akashiwo and P. donghaiense, during their bloom periods. Metabolic features and niche divergence in light harvesting, as well as carbon, nitrogen, and phosphorus acquisition and assimilation likely promoted the bloom occurrence under different environments. The molecular behaviors of coexisting bloom-causing species will give clues for bloom monitoring and management in the oceans.


Asunto(s)
Fitoplancton/genética , Fitoplancton/metabolismo , Proteoma/metabolismo , Carbono/metabolismo , China , Floraciones de Algas Nocivas , Nitrógeno/metabolismo , Océano Pacífico , Fósforo/metabolismo
4.
J Proteomics ; 196: 141-149, 2019 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-30414514

RESUMEN

Phosphorus (P) is a key macronutrient limiting cell growth and bloom formation of marine dinoflagellates. Physiological responses to changing ambient P have been investigated in dinoflagellates; however, the molecular mechanisms behind these responses remain limited. Here, we compared the protein expression profiles of a marine dinoflagellate Alexandrium catenella grown in inorganic P-replete, P-deficient, and inorganic- and organic-P resupplied conditions using an iTRAQ-based quantitative proteomic approach. P deficiency inhibited cell growth and enhanced alkaline phosphatase activity (APA) but had no effect on photosynthetic efficiency. After P resupply, the P-deficient cells recovered growth rapidly and APA decreased. Proteins involved in sphingolipid metabolism, organic P utilization, starch and sucrose metabolism, and photosynthesis were up-regulated in the P-deficient cells, while proteins associated with protein synthesis, nutrient assimilation and energy metabolism were down-regulated. The responses of the P-deficient A. catenella to the resupply of organic and inorganic P presented significant differences: more biological processes were enhanced in the organic P-resupplied cells than those in the inorganic P-resupplied cells; A. catenella might directly utilize G-6-P for nucleic acid synthesis through the pentose phosphate pathway. Our results indicate that A. catenella has evolved diverse adaptive strategies to ambient P deficiency and specific mechanisms to utilize dissolved organic P, which might be an important reason resulting in A. catenella bloom in the low inorganic P environment. BIOLOGICAL SIGNIFICANCE: The ability of marine dinoflagellates to utilize different phosphorus (P) species and adapt to ambient P deficiency determines their success in the ocean. In this study, we investigated the response mechanisms of a dinoflagellate Alexandrium catenella to ambient P deficiency, and resupply of inorganic- and organic-P at the proteome level. Our results indicated that A. catenella initiated multiple adaptive strategies to ambient P deficiency, e.g. utilizing nonphospholipids and glycosphingolipids instead of phospholipids, enhancing expression of acid phosphatase to utilize organic P, and reallocating intracellular energy. Proteome responses of the P-deficient A. catenella to resupply of inorganic- and organic-P differed significantly, indicating different utilization pathways of inorganic and organic P, A. catenella might directly utilize low molecular weight organic P, such as G-6-P as both P and carbon sources.


Asunto(s)
Organismos Acuáticos/metabolismo , Dinoflagelados/metabolismo , Fósforo/farmacología , Proteómica , Proteínas Protozoarias/metabolismo
5.
Environ Microbiol ; 20(3): 1078-1094, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29345115

RESUMEN

Despite numerous laboratory studies on physiologies of harmful algal bloom (HAB) species, physiologies of these algae during a natural bloom are understudied. Here, we investigated a bloom of the raphidophyte Heterosigma akashiwo in the East China Sea in 2014 using metabarcode (18S rDNA) and metatranscriptome sequencing. Based on 18S rDNA analyses, the phytoplankton community shifted from high diversity in the pre-bloom stage to H. akashiwo predominance during the bloom. A sharp decrease in ambient dissolved inorganic phosphate and strong up-regulation of phosphate and dissolved organic phosphorus (DOP) uptake genes, including the rarely documented (ppGpp)ase, in H. akashiwo from pre-bloom to bloom was indicative of rapid phosphorus uptake and efficient utilization of DOP that might be a driver of the H. akashiwo bloom. Furthermore, observed up-regulated expression of mixotrophy-related genes suggests potential contribution of mixotrophy to the bloom. Accelerating photosynthetic carbon fixation was also implied by the up-regulation of carbonic anhydrase genes during the bloom. Notably, we also observed a strong morning-to-afternoon shift in the expression of many genes. Our findings provide insights into metabolic processes likely important for H. akashiwo bloom formation, and suggest the need to consider timing of sampling in field studies on this alga.


Asunto(s)
Floraciones de Algas Nocivas/fisiología , Fitoplancton/clasificación , Estramenopilos/crecimiento & desarrollo , Estramenopilos/genética , China , Clorofila/análisis , ADN Ribosómico/genética , Dinoflagelados/crecimiento & desarrollo , Océanos y Mares , Fosfatos/metabolismo , Fósforo/metabolismo , Fotosíntesis/genética , Fitoplancton/genética , Pirofosfatasas/biosíntesis , Pirofosfatasas/genética , ARN Ribosómico 18S/genética
6.
Artículo en Inglés | MEDLINE | ID: mdl-21977052

RESUMEN

This study developed a multilayered, gel-based, and underivatized strategy for de novo protein sequence analysis of unsequenced dinoflagellates using a MALDI-TOF/TOF mass spectrometer with the assistance of DeNovo Explorer software. MASCOT was applied as the first layer screen to identify either known or unknown proteins sharing identical peptides presented in a database. Once the confident identifications were removed after searching against the NCBInr database, the remainder was searched against the dinoflagellate expressed sequence tag database. In the last layer, those borderline and nonconfident hits were further subjected to de novo interpretation using DeNovo Explorer software. The de novo sequences passing a reliability filter were subsequently submitted to nonredundant MS-BLAST search. Using this layer identification method, 216 protein spots representing 158 unique proteins out of 220 selected protein spots from Alexandrium tamarense, a dinoflagellate with unsequenced genome, were confidently or tentatively identified by database searching. These proteins were involved in various intracellular physiological activities. This study is the first effort to develop a completely automated approach to identify proteins from unsequenced dinoflagellate databases and establishes a preliminary protein database for various physiological studies of dinoflagellates in the future.

7.
Artículo en Inglés | MEDLINE | ID: mdl-21904561

RESUMEN

The cell wall is an important subcellular component of dinoflagellate cells with regard to various aspects of cell surface-associated ecophysiology, but the full range of cell wall proteins (CWPs) and their functions remain to be elucidated. This study identified and characterized CWPs of a toxic dinoflagellate, Alexandrium catenella, using a combination of 2D fluorescence difference gel electrophoresis (DIGE) and MALDI TOF-TOF mass spectrometry approaches. Using sequential extraction and temperature shock methods, sequentially extracted CWPs and protoplast proteins, respectively, were separated from A. catenella. From the comparison between sequentially extracted CWPs labeled with Cy3 and protoplast proteins labeled with Cy5, 120 CWPs were confidently identified in the 2D DIGE gel. These proteins gave positive identification of protein orthologues in the protein database using de novo sequence analysis and homology-based search. The majority of the prominent CWPs identified were hypothetical or putative proteins with unknown function or no annotation, while cell wall modification enzymes, cell wall structural proteins, transporter/binding proteins, and signaling and defense proteins were tentatively identified in agreement with the expected role of the extracellular matrix in cell physiology. This work represents the first attempt to investigate dinoflagellate CWPs and provides a potential tool for future comprehensive characterization of dinoflagellate CWPs and elucidation of their physiological functions.

8.
Environ Pollut ; 148(2): 679-87, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17257722

RESUMEN

We examined the influence of macronutrient (nitrate and phosphate) additions on Ni uptake by phytoplankton (Prorocentrum donghaiense and Skeletonema costatum) and its subsequent transfer to marine copepods (Calanus sinicus and Labidocera euchaeta). Ni uptake by phytoplankton after 24h of exposure was markedly dependent on nutrient conditions, with a higher nutrient quota facilitating Ni accumulation in the algae. Trophic transfer was quantified by measurements of the Ni assimilation efficiency in C. sinicus and L. euchaeta, feeding on the algae under different nutrient treatments. Ni assimilation efficiency generally increased with an increase of nutrient concentration in the algae. A significant positive-correlation was found between the Ni assimilation efficiencies of the copepods and the %intracellular Ni in the algal cells. However, ambient nutritional conditions had little effect on the physiological turnover rate constant of Ni by copepods. Thus, nutrient enrichment may lead to an increase in Ni uptake and transfer in marine plankton.


Asunto(s)
Copépodos/metabolismo , Níquel/farmacocinética , Nitrógeno/metabolismo , Fósforo/metabolismo , Fitoplancton/metabolismo , Animales , Medios de Cultivo , Ingestión de Alimentos/fisiología , Eutrofización/fisiología , Nitrógeno/análisis , Fósforo/análisis , Agua de Mar/química , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA