Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Pollut ; 346: 123644, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38402935

RESUMEN

Although anaerobic digestion is the mainstream technology for treating food waste (FW), the high pollutant concentration in the resultant food waste anaerobic digestate (FWAD) often poses challenges for the subsequent biochemical treatment such as activated sludge process. In this study, taking a typical FW treatment plant as an example, we analyzed the reasons behind the difficulties in treating FWAD and tested a novel process called as bio-conditioning dewatering followed by activated sludge process (BDAS) to purify FWAD. Results showed that high concentrations of suspended solids (SS) (16439 ± 475 mg/L), chemical oxygen demand (COD) (24642 ± 1301 mg/L), and ammonium nitrogen (NH4+-N) (2641 ± 52 mg/L) were main factors affecting the purification efficiency of FWAD by the conventional activated sludge process. By implementing bio-conditioning dewatering for solid-liquid separation, near 100% of SS and total phosphorus (TP), 90% of COD, 38% of total nitrogen (TN), and 37% of NH4+-N in the digestate could be effectively removed or recovered, consequently generating the transparent filtrate with relatively low pollution load and dry sludge cake (<60% of moisture content). Furthermore, after ammonia stripping and biochemical treatment, the effluent met the relevant discharge standards regulated by China, with the concentrations of COD, TN, NH4+-N, and TP ranging from 151 to 405, 10-56, 0.9-31, and 0.4-0.8 mg/L, respectively. This proposed BDAS approach exhibited stable performance and low operating costs, offering a promising solution to purify FWAD in practical engineering and simultaneously realize resource recovery.


Asunto(s)
Eliminación de Residuos , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Anaerobiosis , Alimento Perdido y Desperdiciado , Alimentos , Eliminación de Residuos Líquidos/métodos , Nitrógeno/análisis , Fósforo/análisis , Reactores Biológicos
2.
Artículo en Inglés | MEDLINE | ID: mdl-36833685

RESUMEN

The unsatisfactory performance of the conventional swine wastewater treatment is drawing increasing attention due to the large amount of refractory chemical oxygen demand (COD), nitrogen, and phosphorus attached to the suspended solids (SS). In this study, for the first time, a novel process based on bio-coagulation dewatering followed by a bio-oxidation (BDBO) system was developed to treat swine wastewater containing high-strength SS, COD, TN, and TP. Firstly, after the bio-coagulation process, the removal efficiencies of SS, COD, NH3-N, and TP reached as high as 99.94%, 98.09%, 61.19%, and 99.92%, respectively. Secondly, the filtrate of the bio-coagulation dewatering process was introduced into the subsequent bio-oxidation process, in which the residual COD and NH3-N were further biodegraded in a sequence batch reactor. In addition, the dewatering performance of the concentrated swine slurry was substantially improved, with the specific resistance to filtration decreasing from 17.0 × 1012 to 0.3 × 1012 m/kg. Moreover, the concentrated swine slurry was pressed and filtered into a semi-dry cake after pilot-scale bio-coagulation dewatering treatment. Finally, the concentrations of COD and NH3-N in the effluent after the BDBO process, ranging between 150-170 mg/L and 75-90 mg/L, met the relevant discharge standard. Compared to traditional treatments, the BDBO system has excellent large-scale potential for improving the treatment efficiency, shortening the operation period, and reducing the processing costs, and is emerging as a cost-effective alternative for the treatment of wastewater containing high concentrations of SS, COD, TN, and TP.


Asunto(s)
Eliminación de Residuos Líquidos , Aguas Residuales , Animales , Porcinos , Estudios de Factibilidad , Fósforo , Nitrógeno , Reactores Biológicos
3.
J Environ Sci (China) ; 24(8): 1403-10, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23513681

RESUMEN

The sewage sludge conditioning process is critical to improve the sludge dewaterability prior to mechanical dewatering. Traditionally, sludge is conditioned by physical or chemical approaches, mostly with the addition of inorganic or organic chemicals. Here we report that bioleaching, an efficient and economical microbial method for the removal of sludge-borne heavy metals, also plays a significant role in enhancing sludge dewaterability. The effects of bioleaching and physical or chemical approaches on sludge dewaterability were compared. The conditioning result of bioleaching by Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans on sludge dewatering was investigated and compared with the effects of hydrothermal (121 degrees C for 2 hr), microwave (1050 W for 50 sec), ultrasonic (250 W for 2 min), and chemical conditioning (24% ferric chloride and 68% calcium oxide; dry basis). The results show that the specific resistance to filtration (SRF) or capillary suction time (CST) of sludge is decreased by 93.1% or 74.1%, respectively, after fresh sludge is conditioned by bioleaching, which is similar to chemical conditioning treatment with ferric chloride and calcium oxide but much more effective than other conditioning approaches including hydrothermal, microwave, and ultrasonic conditioning. Furthermore, after sludge dewatering, bioleached sludge filtrate contains the lowest concentrations of chroma (18 times), COD (542 mg/L), total N (TN, 300 mg/L), NH4(+)-N (208 mg/L), and total P (TP, 2 mg/L) while the hydrothermal process resulted in the highest concentration of chroma (660 times), COD (18,155 mg/L), TN (472 mg/L), NH4(+)-N (381 mg/L), and TP (191 mg/L) among these selected conditioning methods. Moreover, unlike chemical conditioning, sludge bioleaching does not result in a significant reduction of organic matter, TN, and TP in the resulting dewatered sludge cake. Therefore, considering sludge dewaterability and the chemical properties of sludge filtrate and resulting dewatered sludge cakes, bioleaching has potential as an approach for improving sludge dewaterability and reducing the cost of subsequent reutilization or disposal of dewatered sludge.


Asunto(s)
Acidithiobacillus thiooxidans/fisiología , Aguas del Alcantarillado , Administración de Residuos/métodos , Color , Filtración , Concentración de Iones de Hidrógeno , Nitrógeno/análisis , Odorantes , Compuestos Orgánicos/análisis , Fósforo/análisis , Aguas del Alcantarillado/análisis , Calidad del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA